Luo X, Yu L, Xu S, Ying S, Feng M
J Fungi (Basel). 2024; 10(6).
PMID: 38921406
PMC: 11205155.
DOI: 10.3390/jof10060420.
Horianopoulos L, Lee C, Schmitt K, Valerius O, Hu G, Caza M
mBio. 2021; 12(6):e0327321.
PMID: 34933457
PMC: 8689522.
DOI: 10.1128/mbio.03273-21.
Zhu X, Arfaoui A, Sayari M, Adam L, Daayf F
Pathogens. 2021; 10(5).
PMID: 33922492
PMC: 8146963.
DOI: 10.3390/pathogens10050510.
Sarma A, Gajan A, Kim S, Gurdziel K, Mao G, Nangia-Makker P
Am J Pathol. 2020; 191(2):368-384.
PMID: 33181138
PMC: 7888193.
DOI: 10.1016/j.ajpath.2020.10.015.
Dhakal S, Macreadie I
Int J Mol Sci. 2020; 21(21).
PMID: 33126501
PMC: 7662794.
DOI: 10.3390/ijms21218014.
The Importance of ATM and ATR in DNA Damage Repair, Development, and Gene Targeting.
Martens M, Horres R, Wendeler E, Reiss B
Genes (Basel). 2020; 11(7).
PMID: 32640722
PMC: 7397299.
DOI: 10.3390/genes11070752.
The XPF-ERCC1 Complex Is Essential for Genome Stability and Is Involved in the Mechanism of Gene Targeting in .
Guyon-Debast A, Rossetti P, Charlot F, Epert A, Neuhaus J, Schaefer D
Front Plant Sci. 2019; 10:588.
PMID: 31143199
PMC: 6521618.
DOI: 10.3389/fpls.2019.00588.
A resource of variant effect predictions of single nucleotide variants in model organisms.
Wagih O, Galardini M, Busby B, Memon D, Typas A, Beltrao P
Mol Syst Biol. 2018; 14(12):e8430.
PMID: 30573687
PMC: 6301329.
DOI: 10.15252/msb.20188430.
Analyzing the Catalytic Activities and Interactions of Eukaryotic Translesion Synthesis Polymerases.
Powers K, Washington M
Methods Enzymol. 2017; 592:329-356.
PMID: 28668126
PMC: 5772771.
DOI: 10.1016/bs.mie.2017.04.002.
Mechanisms of Post-Replication DNA Repair.
Gao Y, Mutter-Rottmayer E, Zlatanou A, Vaziri C, Yang Y
Genes (Basel). 2017; 8(2).
PMID: 28208741
PMC: 5333053.
DOI: 10.3390/genes8020064.
Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases.
Jalal D, Chalissery J, Hassan A
Nucleic Acids Res. 2017; 45(5):2242-2261.
PMID: 28115630
PMC: 5389695.
DOI: 10.1093/nar/gkw1369.
A tale of two cities: A tribute to Aziz Sancar's Nobel Prize in Chemistry for his molecular characterization of NER.
Van Houten B
DNA Repair (Amst). 2016; 37:A3-A13.
PMID: 26861185
PMC: 5068483.
DOI: 10.1016/j.dnarep.2015.12.002.
Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance.
Jablonski A, Lamitina T, Liachko N, Sabatella M, Lu J, Zhang L
J Neurosci. 2015; 35(42):14286-306.
PMID: 26490867
PMC: 4683688.
DOI: 10.1523/JNEUROSCI.0642-15.2015.
Mechanism of DNA damage tolerance.
Bi X
World J Biol Chem. 2015; 6(3):48-56.
PMID: 26322163
PMC: 4549768.
DOI: 10.4331/wjbc.v6.i3.48.
Evolution of Efficient Modular Polyketide Synthases by Homologous Recombination.
Chemler J, Tripathi A, Hansen D, ONeil-Johnson M, Williams R, Starks C
J Am Chem Soc. 2015; 137(33):10603-9.
PMID: 26230368
PMC: 4666801.
DOI: 10.1021/jacs.5b04842.
The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair.
Ball L, Hanna M, Lambrecht A, Mitchell B, Ziola B, Cobb J
PLoS One. 2014; 9(10):e109292.
PMID: 25343618
PMC: 4208732.
DOI: 10.1371/journal.pone.0109292.
Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage--induced mutagenesis in Saccharomyces cerevisiae.
Daraba A, Gali V, Halmai M, Haracska L, Unk I
PLoS Biol. 2014; 12(1):e1001771.
PMID: 24465179
PMC: 3897375.
DOI: 10.1371/journal.pbio.1001771.
The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue.
Xu X, Ball L, Chen W, Tian X, Lambrecht A, Hanna M
PLoS One. 2013; 8(12):e81371.
PMID: 24339919
PMC: 3855272.
DOI: 10.1371/journal.pone.0081371.
DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.
Boiteux S, Jinks-Robertson S
Genetics. 2013; 193(4):1025-64.
PMID: 23547164
PMC: 3606085.
DOI: 10.1534/genetics.112.145219.
Flap endonuclease 1.
Balakrishnan L, Bambara R
Annu Rev Biochem. 2013; 82:119-38.
PMID: 23451868
PMC: 3679248.
DOI: 10.1146/annurev-biochem-072511-122603.