» Articles » PMID: 8058288

Corneal Topographic Analysis After Excimer Photorefractive Keratectomy

Overview
Journal Ophthalmology
Publisher Elsevier
Specialty Ophthalmology
Date 1994 Aug 1
PMID 8058288
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Background: A 2-year experience with corneal topography after photorefractive keratectomy (PRK) is reported, specifically reviewing the correlation of surface regularity index versus best spectacle-corrected visual acuity as a function of various ablation patterns. Centration and stability issues also are discussed.

Methods: Excimer laser PRK for myopia was performed on 502 consecutive eyes. Corneal topographic analysis was performed at the 1-, 3-, 6-, and 12-month postoperative follow-up visits. In all patients, PRK was performed with an argon fluoride laser, and a topographic analysis was done.

Results: Topographic analysis at the first postoperative month was useful for determining decentration of the optical zone. The mean decentration from the pupillary center for all eyes was 0.34 mm. Four main patterns of ablation were noted by subtraction analysis. At the 1-month postoperative examination, a "uniform" ablation was present in 44% of eyes, "keyhole" ablations were present in 12% of eyes, "semicircular" ablations were present in 18% of eyes, and an unusual "central island" was present in the remaining 26% of eyes. However, on subsequent follow-up the central islands tended to resolve with time. At 3 months postoperatively, 18% of eyes in that group showed a central island, 8% showed a central island at 6 months, and only 2% of eyes showed a central island at the 12-month postoperative visit. Correlation of central island topography with visual acuity and progressive hyperopia are discussed.

Conclusions: Corneal topography is essential for evaluating surface changes after excimer PRK. The surface regularity index is a good indicator of best spectacle-corrected visual acuity and is used to evaluate irregular astigmatism after PRK. Central island topographies are correlated with poor initial visual rehabilitation. Long-term stability issues are answered with continued topographic follow-up. Understanding corneal hydration changes between the central and peripheral cornea may help us understand the etiology of central islands.

Citing Articles

Errors in Treatment of Lower-order Aberrations and Induction of Higher-order Aberrations in Laser Refractive Surgery.

Kligman B, Baartman B, Dupps Jr W Int Ophthalmol Clin. 2016; 56(2):19-45.

PMID: 26938336 PMC: 4780213. DOI: 10.1097/IIO.0000000000000113.


Central islands: rate and effect on visual recovery after phototherapeutic keratectomy.

Hashimoto A, Kamiya K, Shimizu K, Igarashi A, Kobashi H Jpn J Ophthalmol. 2015; 59(6):409-14.

PMID: 26289725 DOI: 10.1007/s10384-015-0403-3.


The specific architecture of the anterior stroma accounts for maintenance of corneal curvature.

Muller L, Pels E, Vrensen G Br J Ophthalmol. 2001; 85(4):437-43.

PMID: 11264134 PMC: 1723934. DOI: 10.1136/bjo.85.4.437.


Recent advances in refractive surgery.

Yu E, Jackson W CMAJ. 1999; 160(9):1329-37.

PMID: 10333840 PMC: 1230320.


Wound healing anomalies after excimer laser photorefractive keratectomy: correlation of clinical outcomes, corneal topography, and confocal microscopy.

Steinert R Trans Am Ophthalmol Soc. 1997; 95:629-714.

PMID: 9440190 PMC: 1298378.