» Articles » PMID: 8035801

SPT10 and SPT21 Are Required for Transcription of Particular Histone Genes in Saccharomyces Cerevisiae

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1994 Aug 1
PMID 8035801
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

The Saccharomyces cerevisiae genome contains four loci that encode histone proteins. Two of these loci, HTA1-HTB1 and HTA2-HTB2, each encode histones H2A and H2B. The other two loci, HHT1-HHF1 and HHT2-HHF2, each encode histones H3 and H4. Because of their redundancy, deletion of any one histone locus does not cause lethality. Previous experiments demonstrated that mutations at one histone locus, HTA1-HTB1, do cause lethality when in conjunction with mutations in the SPT10 gene. SPT10 has been shown to be required for normal levels of transcription of several genes in S. cerevisiae. Motivated by this double-mutant lethality, we have now investigated the interactions of mutations in SPT10 and in a functionally related gene, SPT21, with mutations at each of the four histone loci. These experiments have demonstrated that both SPT10 and SPT21 are required for transcription at two particular histone loci, HTA2-HTB2 and HHF2-HHT2, but not at the other two histone loci. These results suggest that under some conditions, S. cerevisiae may control the level of histone proteins by differential expression of its histone genes.

Citing Articles

Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients.

Chatzitheodoridou D, Bureik D, Padovani F, Nadimpalli K, Schmoller K EMBO J. 2024; 43(21):5141-5168.

PMID: 39271795 PMC: 11535423. DOI: 10.1038/s44318-024-00227-w.


Calcineurin/NFATc1 pathway represses cellular cytotoxicity by modulating histone H3 expression.

Sato Y, Habara M, Hanaki S, Sharif J, Tomiyasu H, Miki Y Sci Rep. 2024; 14(1):14732.

PMID: 38926604 PMC: 11208570. DOI: 10.1038/s41598-024-65769-9.


A fluorescent assay for cryptic transcription in Saccharomyces cerevisiae reveals novel insights into factors that stabilize chromatin structure on newly replicated DNA.

Gao E, Brown J, Jung S, Howe L Genetics. 2024; 226(4).

PMID: 38407959 PMC: 10990430. DOI: 10.1093/genetics/iyae016.


Gene loss and cis-regulatory novelty shaped core histone gene evolution in the apiculate yeast Hanseniaspora uvarum.

Haase M, Steenwyk J, Boeke J Genetics. 2024; 226(3).

PMID: 38271560 PMC: 10917516. DOI: 10.1093/genetics/iyae008.


The Spt10 GNAT Superfamily Protein Modulates Development, Cell Cycle Progression and Virulence in the Fungal Insect Pathogen, .

Cai Q, Wang J, Xie J, Jiang D, Keyhani N J Fungi (Basel). 2021; 7(11).

PMID: 34829192 PMC: 8619123. DOI: 10.3390/jof7110905.


References
1.
Osley M, Lycan D . Trans-acting regulatory mutations that alter transcription of Saccharomyces cerevisiae histone genes. Mol Cell Biol. 1987; 7(12):4204-10. PMC: 368101. DOI: 10.1128/mcb.7.12.4204-4210.1987. View

2.
Natsoulis G, Winston F, Boeke J . The SPT10 and SPT21 genes of Saccharomyces cerevisiae. Genetics. 1994; 136(1):93-105. PMC: 1205796. DOI: 10.1093/genetics/136.1.93. View

3.
CROSS S, Smith M . Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in Saccharomyces cerevisiae. Mol Cell Biol. 1988; 8(2):945-54. PMC: 363227. DOI: 10.1128/mcb.8.2.945-954.1988. View

4.
Fassler J, Winston F . Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics. 1988; 118(2):203-12. PMC: 1203274. DOI: 10.1093/genetics/118.2.203. View

5.
Norris D, Osley M, Fassler J, Winston F . Changes in histone gene dosage alter transcription in yeast. Genes Dev. 1988; 2(2):150-9. DOI: 10.1101/gad.2.2.150. View