» Articles » PMID: 7899246

Surface Modification of Poly(lactide-co-glycolide) Nanospheres by Biodegradable Poly(lactide)-poly(ethylene Glycol) Copolymers

Overview
Journal Pharm Res
Specialties Pharmacology
Pharmacy
Date 1994 Dec 1
PMID 7899246
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

The modification of surface properties of biodegradable poly(lactide-co- glycolide) (PLGA) and model polystyrene nanospheres by poly(lactide)-poly(ethylene glycol) (PLA:PEG) copolymers has been assessed using a range of in vitro characterization methods followed by in vivo studies of the nanospheres biodistribution after intravenous injection into rats. Coating polymers with PLA:PEG ratio of 2:5 and 3:4 (PEG chains of 5000 and 2000 Da. respectively) were studied. The results reveal the formation of a PLA:PEG coating layer on the particle surface resulting in an increase in the surface hydrophilicity and decrease in the surface charge of the nanospheres. The effects of addition of electrolyte and changes in pH on stability of the nanosphere dispersions confirm that uncoated particles are electrostatically stabilized, while in the presence of the copolymers, steric repulsions are responsible for the stability. The PLA:PEG coating also prevented albumin adsorption onto the colloid surface. The evidence that this effect was observed for the PLA:PEG 3:4 coated nanospheres may indicate that a poly(ethylene glycol) chain of 2000 Da can provide an effective repulsive barrier to albumin adsorption. The in vivo results reveal that coating of PLGA nanospheres with PLA:PEG copolymers can alter the biodistribution in comparison to uncoated PLGA nanospheres. Coating of the model polystyrene nanospheres with PLA:PEG copolymers resulted in an initial high circulation level, but after 3 hours the organ deposition data showed values similar to uncoated polystyrene spheres. The difference in the biological behaviour of coated PLGA and polystyrene nanospheres may suggest a different stability of the adsorbed layers on these two systems.(ABSTRACT TRUNCATED AT 250 WORDS)

Citing Articles

Application of Design of Expert software for evaluating the influence of formulation variables on the encapsulation efficacy, drug content and particle size of PEO-PPO-PEO/Poly (DL-lactide-co-caprolactone) nanoparticles as carriers for SN-38.

Koliqi R, Breznica P, Daka A, Koshi B Med Pharm Rep. 2022; 94(4):483-497.

PMID: 36105496 PMC: 9389872. DOI: 10.15386/mpr-1831.


Metabolic Signatures of Surface-Modified Poly(lactic--glycolic acid) Nanoparticles in Differentiated THP-1 Cells Derived with Liquid Chromatography-Mass Spectrometry-based Metabolomics.

Al-Natour M, Abdelrazig S, Ghaemmaghami A, Alexander C, Kim D ACS Omega. 2022; 7(33):28806-28819.

PMID: 36033713 PMC: 9404530. DOI: 10.1021/acsomega.2c01660.


Fluorophore Localization Determines the Results of Biodistribution of Core-Shell Nanocarriers.

Hinz A, Szczech M, Szczepanowicz K, Bzowska M Int J Nanomedicine. 2022; 17:577-588.

PMID: 35173431 PMC: 8840834. DOI: 10.2147/IJN.S343266.


Formulation and Evaluation of Mucilage-Based Nanoparticles for Effective Delivery of Ezetimibe.

Tulain U, Mahmood A, Aslam S, Erum A, Malik N, Rashid A Int J Nanomedicine. 2021; 16:4579-4596.

PMID: 34267514 PMC: 8275157. DOI: 10.2147/IJN.S308790.


Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets.

Vincent M, Bobbala S, Karabin N, Frey M, Liu Y, Navidzadeh J Nat Commun. 2021; 12(1):648.

PMID: 33510170 PMC: 7844416. DOI: 10.1038/s41467-020-20886-7.


References
1.
Illum L, Jacobsen L, Muller R, Mak E, Davis S . Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials. 1987; 8(2):113-7. DOI: 10.1016/0142-9612(87)90099-8. View

2.
Norman M, Williams P, Illum L . Influence of block copolymers on the adsorption of plasma proteins to microspheres. Biomaterials. 1993; 14(3):193-202. DOI: 10.1016/0142-9612(93)90023-u. View

3.
Illum L, Davis S . The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Lett. 1984; 167(1):79-82. DOI: 10.1016/0014-5793(84)80836-4. View

4.
Porter C, Moghimi S, Illum L, Davis S . The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett. 1992; 305(1):62-6. DOI: 10.1016/0014-5793(92)80655-z. View

5.
Woodle M, Lasic D . Sterically stabilized liposomes. Biochim Biophys Acta. 1992; 1113(2):171-99. DOI: 10.1016/0304-4157(92)90038-c. View