» Articles » PMID: 7816643

Bending and Curvature Calculations in B-DNA

Overview
Specialty Biochemistry
Date 1994 Dec 11
PMID 7816643
Citations 99
Authors
Affiliations
Soon will be listed here.
Abstract

A simple program, BEND, has been written to calculate the magnitude of local bending and macroscopic curvature at each point along an arbitrary B-DNA sequence, using any desired bending model that specifies values of twist, roll and tilt as a function of sequence. The program has been used to evaluate six different DNA bending models in three categories. Two are bent non-A-tract models: (a) A new model based on the nucleosome positioning data of Satchwell et al 1986 (J. Mol. Biol. 191, 659-675), (b) The model of Calladine et al 1988 (J. Mol. Biol. 201, 127-137). Three are bent A-tract models: (c) The wedge model of Bolshoy et al 1991 (Proc. Natl. Acad. Sci. USA 88, 2312-2316), (d) The model of Cacchione et al 1989 (Biochem. 28, 8706-8713), (e) A reversed version of model (b). The last is a junction model: (f) The model of Koo & Crothers 1988 (Proc. Natl. Acad. Sci. USA 85, 1763-1767). Although they have widely different assumptions and values for twist, roll and tilt, all six models correctly predict experimental A-tract curvature as measured by gel retardation and cyclization kinetics, but only the new nucleosome positioning model is successful in predicting curvature in regions containing phased GGGCCC sequences. This model--showing local bending at mixed sequence DNA, strong bends at the sequence GGC, and straight, rigid A-tracts--is the only model consistent with both solution data from gel retardation and cyclization kinetics and structural data from x-ray crystallography.

Citing Articles

Are kuravirus capsid diameters quantized? The first all-atom genome tracing method for double-stranded DNA viruses.

Flores S, Maly M, Hrebik D, Plevka P, cerny J Nucleic Acids Res. 2023; 52(3):e12.

PMID: 38084886 PMC: 10853797. DOI: 10.1093/nar/gkad1153.


Investigating the diversification of holocentromeric satellite DNA Tyba in Rhynchospora (Cyperaceae).

Costa L, Marques A, Buddenhagen C, Pedrosa-Harand A, Souza G Ann Bot. 2023; 131(5):813-825.

PMID: 36815646 PMC: 10184444. DOI: 10.1093/aob/mcad036.


Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution.

Camacho J, Cabrero J, Lopez-Leon M, Martin-Pecina M, Perfectti F, Garrido-Ramos M BMC Biol. 2022; 20(1):36.

PMID: 35130900 PMC: 8822648. DOI: 10.1186/s12915-021-01216-9.


Novel implications of a strictly monomorphic (GCC) repeat in the human PRKACB gene.

Khamse S, Jafarian Z, Bozorgmehr A, Tavakoli M, Afshar H, Keshavarz M Sci Rep. 2021; 11(1):20629.

PMID: 34667254 PMC: 8526596. DOI: 10.1038/s41598-021-99932-3.


Modeling Site-Specific Nucleotide Biases Affecting Himar1 Transposon Insertion Frequencies in TnSeq Data Sets.

Choudhery S, Brown A, Akusobi C, Rubin E, Sassetti C, Ioerger T mSystems. 2021; 6(5):e0087621.

PMID: 34665010 PMC: 8525568. DOI: 10.1128/mSystems.00876-21.


References
1.
Srinivasan A, Torres R, Clark W, Olson W . Base sequence effects in double helical DNA. I. Potential energy estimates of local base morphology. J Biomol Struct Dyn. 1987; 5(3):459-96. DOI: 10.1080/07391102.1987.10506409. View

2.
Hagerman P . Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry. 1985; 24(25):7033-7. DOI: 10.1021/bi00346a001. View

3.
Satchwell S, Drew H, Travers A . Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986; 191(4):659-75. DOI: 10.1016/0022-2836(86)90452-3. View

4.
De Santis P, Palleschi A, Savino M, Scipioni A . Validity of the nearest-neighbor approximation in the evaluation of the electrophoretic manifestations of DNA curvature. Biochemistry. 1990; 29(39):9269-73. DOI: 10.1021/bi00491a023. View

5.
Brukner I, Dlakic M, Savic A, Susic S, Pongor S, Suck D . Evidence for opposite groove-directed curvature of GGGCCC and AAAAA sequence elements. Nucleic Acids Res. 1993; 21(4):1025-9. PMC: 309239. DOI: 10.1093/nar/21.4.1025. View