Jung M, Park Y, Ahn Y
Iran J Biotechnol. 2024; 22(3):e3878.
PMID: 39737206
PMC: 11682524.
DOI: 10.30498/ijb.2024.442517.3878.
Dabbaghizadeh A, Pare A, Cheng-Boivin Z, Dagher R, Minotti S, Dicaire M
Int J Mol Sci. 2022; 23(24).
PMID: 36555380
PMC: 9779362.
DOI: 10.3390/ijms232415742.
Obuchowski I, Liberek K
Cell Stress Chaperones. 2020; 25(4):593-600.
PMID: 32301005
PMC: 7332594.
DOI: 10.1007/s12192-020-01094-0.
Mistarz U, Chandler S, Brown J, Benesch J, Rand K
J Am Soc Mass Spectrom. 2018; 30(1):45-57.
PMID: 30460642
DOI: 10.1007/s13361-018-2064-1.
Kamariah N, Eisenhaber B, Eisenhaber F, Gruber G
Sci Rep. 2018; 8(1):14151.
PMID: 30237544
PMC: 6147784.
DOI: 10.1038/s41598-018-32527-7.
Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble Amyloid-like Oligomers.
Yoo N, Dogra S, Meinen B, Tse E, Haefliger J, Southworth D
J Mol Biol. 2018; 430(21):4195-4208.
PMID: 30130556
PMC: 6186493.
DOI: 10.1016/j.jmb.2018.08.016.
CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance.
Huang L, Cheng G, Khan A, Wei A, Yu Q, Yang S
Protoplasma. 2018; 256(1):39-51.
PMID: 29946904
DOI: 10.1007/s00709-018-1280-7.
A Class II small heat shock protein OsHsp18.0 plays positive roles in both biotic and abiotic defense responses in rice.
Kuang J, Liu J, Mei J, Wang C, Hu H, Zhang Y
Sci Rep. 2017; 7(1):11333.
PMID: 28900229
PMC: 5595972.
DOI: 10.1038/s41598-017-11882-x.
The Mechanisms of Maize Resistance to by Comprehensive Analysis of RNA-seq Data.
Wang Y, Zhou Z, Gao J, Wu Y, Xia Z, Zhang H
Front Plant Sci. 2016; 7:1654.
PMID: 27867390
PMC: 5096342.
DOI: 10.3389/fpls.2016.01654.
Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.
Guzman C, Conaco C
PLoS One. 2016; 11(10):e0165368.
PMID: 27788197
PMC: 5082814.
DOI: 10.1371/journal.pone.0165368.
Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.
Kaur H, Petla B, Kamble N, Singh A, Rao V, Salvi P
Front Plant Sci. 2015; 6:713.
PMID: 26442027
PMC: 4568394.
DOI: 10.3389/fpls.2015.00713.
A first line of stress defense: small heat shock proteins and their function in protein homeostasis.
Haslbeck M, Vierling E
J Mol Biol. 2015; 427(7):1537-48.
PMID: 25681016
PMC: 4360138.
DOI: 10.1016/j.jmb.2015.02.002.
Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins.
Mattoo R, Goloubinoff P
Cell Mol Life Sci. 2014; 71(17):3311-25.
PMID: 24760129
PMC: 4131146.
DOI: 10.1007/s00018-014-1627-y.
Expression of a truncated ATHB17 protein in maize increases ear weight at silking.
Rice E, Khandelwal A, Creelman R, Griffith C, Ahrens J, Taylor J
PLoS One. 2014; 9(4):e94238.
PMID: 24736658
PMC: 3988052.
DOI: 10.1371/journal.pone.0094238.
Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.
Reddy P, Kavi Kishor P, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J
PLoS One. 2014; 9(3):e89125.
PMID: 24594978
PMC: 3942355.
DOI: 10.1371/journal.pone.0089125.
Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment.
Yang G, Wang Y, Zhang K, Gao C
Mol Biol Rep. 2014; 41(3):1279-89.
PMID: 24395294
DOI: 10.1007/s11033-013-2973-9.
An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.
Basha E, Jones C, Blackwell A, Cheng G, Waters E, Samsel K
J Mol Biol. 2013; 425(10):1683-96.
PMID: 23416558
PMC: 3646915.
DOI: 10.1016/j.jmb.2013.02.011.
Alternative bacterial two-component small heat shock protein systems.
Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf S, Groll M
Proc Natl Acad Sci U S A. 2012; 109(50):20407-12.
PMID: 23184973
PMC: 3528540.
DOI: 10.1073/pnas.1209565109.
Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants.
Shakeel S, Haq N, Heckathorn S, Luthe D
Plant Cell Rep. 2012; 31(10):1943-57.
PMID: 22797908
DOI: 10.1007/s00299-012-1307-z.
Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach.
Stengel F, Baldwin A, Bush M, Hilton G, Lioe H, Basha E
Chem Biol. 2012; 19(5):599-607.
PMID: 22633411
PMC: 3458707.
DOI: 10.1016/j.chembiol.2012.04.007.