» Articles » PMID: 7651831

The Trinucleotide Repeat Sequence D(GTC)15 Adopts a Hairpin Conformation

Overview
Specialty Biochemistry
Date 1995 Jul 25
PMID 7651831
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The structure of a single-stranded (ss) oligonucleotide containing (GTC)15 [ss(GTC)15] was examined. As a control, parallel studies were performed with ss(CTG)15, an oligonucleotide that forms a hairpin. Electrophoretic mobility, KMnO4 oxidation and P1 nuclease studies demonstrate that, similar to ss(CTG)15, ss(GTC)15 forms a hairpin containing base paired and/or stacked thymines in the stem. Electrophoretic mobility melting profiles performed in approximately 1 mM Na+ revealed that the melting temperature of ss(GTC)15 and ss(CTG)15 were 38 and 48 degrees C respectively. The loop regions of ss(GTC)15 and ss(CTG)15 were cleaved by single-strand-specific P1 nuclease at the T25-C29 and G26-C27 phosphodiester bonds respectively (where the loop apex of the DNAs is T28). Molecular dynamics simulations suggested that in ss(GTC)15 the loop was bent towards the major groove of the stem, apparently causing an increased exposure of the T25-C29 region to solvent. In ss(CTG)15 guanine--guanine stacking caused a separation of the G26 and C27 bases, resulting in exposure of the intervening phosphodiester to solvent. The results suggest that ss(GTC)15 and ss(CTG)15 form similar, but distinguishable, hairpin structures.

Citing Articles

Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.

Xu P, Zhang J, Pan F, Mahn C, Roland C, Sagui C J Mol Biol. 2023; 435(10):168086.

PMID: 37024008 PMC: 10191799. DOI: 10.1016/j.jmb.2023.168086.


Chromosomal directionality of DNA mismatch repair in Escherichia coli.

Hasan A, Leach D Proc Natl Acad Sci U S A. 2015; 112(30):9388-93.

PMID: 26170312 PMC: 4522816. DOI: 10.1073/pnas.1505370112.


Conformation effects of CpG methylation on single-stranded DNA oligonucleotides: analysis of the opioid peptide dynorphin-coding sequences.

Taqi M, Warmlander S, Yamskova O, Madani F, Bazov I, Luo J PLoS One. 2012; 7(6):e39605.

PMID: 22768096 PMC: 3387154. DOI: 10.1371/journal.pone.0039605.


Comparative genomics and molecular dynamics of DNA repeats in eukaryotes.

Richard G, Kerrest A, Dujon B Microbiol Mol Biol Rev. 2008; 72(4):686-727.

PMID: 19052325 PMC: 2593564. DOI: 10.1128/MMBR.00011-08.


Replication fork stalling at natural impediments.

Mirkin E, Mirkin S Microbiol Mol Biol Rev. 2007; 71(1):13-35.

PMID: 17347517 PMC: 1847372. DOI: 10.1128/MMBR.00030-06.


References
1.
Maxam A, Gilbert W . Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980; 65(1):499-560. DOI: 10.1016/s0076-6879(80)65059-9. View

2.
Rubin C, Schmid C . Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res. 1980; 8(20):4613-9. PMC: 324374. DOI: 10.1093/nar/8.20.4613. View

3.
van Gunsteren W, Berendsen H, Geurtsen R, Zwinderman H . A molecular dynamics computer simulation of an eight-base-pair DNA fragment in aqueous solution: comparison with experimental two-dimensional NMR data. Ann N Y Acad Sci. 1986; 482:287-303. DOI: 10.1111/j.1749-6632.1986.tb20962.x. View

4.
Puglisi J, Tinoco Jr I . Absorbance melting curves of RNA. Methods Enzymol. 1989; 180:304-25. DOI: 10.1016/0076-6879(89)80108-9. View

5.
Wartell R, Hosseini S, Moran Jr C . Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res. 1990; 18(9):2699-705. PMC: 330754. DOI: 10.1093/nar/18.9.2699. View