» Articles » PMID: 7647262

Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1995 Jun 1
PMID 7647262
Citations 134
Authors
Affiliations
Soon will be listed here.
Abstract

An investigation on the photobleaching behavior of fluorescein in microscopy was carried out through a systematic analysis of photobleaching mechanisms. The individual photochemical reactions of fluorescein were incorporated into a theoretical analysis and mathematical simulation to study the photochemical processes leading to photobleaching of fluorescein in microscopy. The photobleaching behavior of free and bound fluorescein has also been investigated by experimental means. Both the theoretical simulation and experimental data show that photobleaching of fluorescein in microscopy is, in general, not a single-exponential process. The simulation suggests that the non-single-exponential behavior is caused by the oxygen-independent, proximity-induced triplet-triplet or triplet-ground state dye reactions of bound fluorescein in microscopy. The single-exponential process is a special case of photobleaching behavior when the reactions between the triplet dye and molecular oxygen are dominant.

Citing Articles

Transient colloidal crystals fueled by electrochemical reaction products.

Rath M, Srivastava S, Carmona E, Battumur S, Arumugam S, Albertus P Nat Commun. 2025; 16(1):2077.

PMID: 40021648 PMC: 11871323. DOI: 10.1038/s41467-025-57333-4.


Simple, cost-effective, highly stable solid-state photoluminescence standard for fluorometer calibration in low-resource settings.

Eger J, Bailly M, Christen J Opt Contin. 2025; 3(11):2060-2077.

PMID: 39989862 PMC: 11844768. DOI: 10.1364/OPTCON.534029.


Impact of triplet state population on GFP-type fluorescence and photobleaching.

Byrdin M, Byrdina S Biol Cell. 2025; 117(2):e2400076.

PMID: 39945540 PMC: 11823621. DOI: 10.1111/boc.202400076.


Novel photocrosslinking chemical probes utilized for high-resolution spatial transcriptomics.

Spitalny L, Falco N, England W, Allred T, Spitale R RSC Chem Biol. 2025; 6(3):404-411.

PMID: 39845105 PMC: 11748054. DOI: 10.1039/d4cb00262h.


Impact of photobleaching on quantitative, spatio-temporal, super-resolution imaging of mitochondria in live larvae.

Ioannis S, Jens V, Alan G, Michael R, Christopher T, Barbara C Npj Imaging. 2024; 2(1):43.

PMID: 39525282 PMC: 11541191. DOI: 10.1038/s44303-024-00043-1.


References
1.
Szaba Jr G, Pine P, Weaver J, Kasari M, Aszalos A . Epitope mapping by photobleaching fluorescence resonance energy transfer measurements using a laser scanning microscope system. Biophys J. 1992; 61(3):661-70. PMC: 1260284. DOI: 10.1016/S0006-3495(92)81871-4. View

2.
Kubitscheck U, KIRCHEIS M, Schweitzer-Stenner R, Dreybrodt W, Jovin T, Pecht I . Fluorescence resonance energy transfer on single living cells. Application to binding of monovalent haptens to cell-bound immunoglobulin E. Biophys J. 1991; 60(2):307-18. PMC: 1260066. DOI: 10.1016/S0006-3495(91)82055-0. View

3.
Benson D, Bryan J, Plant A, Gotto Jr A, Smith L . Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. J Cell Biol. 1985; 100(4):1309-23. PMC: 2113759. DOI: 10.1083/jcb.100.4.1309. View

4.
Schlessinger J, Koppel D, Axelrod D, Jacobson K, Webb W, Elson E . Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci U S A. 1976; 73(7):2409-13. PMC: 430587. DOI: 10.1073/pnas.73.7.2409. View

5.
Marriott G, Clegg R, Arndt-Jovin D, Jovin T . Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys J. 1991; 60(6):1374-87. PMC: 1260198. DOI: 10.1016/S0006-3495(91)82175-0. View