» Articles » PMID: 39473933

A Close Look at Mechanism, Application, and Opportunities of Electrochemiluminescence Microscopy

Overview
Specialty Chemistry
Date 2024 Oct 30
PMID 39473933
Authors
Affiliations
Soon will be listed here.
Abstract

Electrochemiluminescence (ECL) is a typical luminescence process triggered by electrochemical reactions. Due to the separated signal types, ECL measurements have some merits of high sensitivity, low background, and simple configuration. Coupled with a microscopy setup, ECL microscopy (ECLM) has the unique characteristics of ECL and is also furnished with spatiotemporal resolution. Thus, many applications have been created, including nanoscale sensing, ECL mechanism deciphering, transient events of single objects, and ECLM crossover methods. In this review, we will overview the development and basic knowledge of ECL and then profile the setup design of ECLM. Through the understanding of these two parts, we will next probe the diverse applications of ECLM, combining the inter-relation with each other. Finally, the outlook discussing the expectations of further progress of ECLM technology.

Citing Articles

Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody.

Zhang Y, Qian L, Zhang Q, Li Y, Liu Y, Jiang D Biosensors (Basel). 2025; 15(1).

PMID: 39852098 PMC: 11763322. DOI: 10.3390/bios15010047.


Enhanced Electrochemiluminescence by Knocking Out Gold Active Sites.

Leka Kottaiveedu Sivakumar I, Bouffier L, Sojic N, Senthil Kumar S Angew Chem Int Ed Engl. 2024; 64(10):e202421185.

PMID: 39679965 PMC: 11878343. DOI: 10.1002/anie.202421185.


Complex electrochemiluminescence patterns shaped by hydrodynamics at a rotating bipolar electrode.

Arias-Aranda L, Salinas G, Kuhn A, Xu G, Kanoufi F, Bouffier L Chem Sci. 2024; 15(23):8723-8730.

PMID: 38873074 PMC: 11168095. DOI: 10.1039/d4sc02528h.


Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes.

Ben Trad F, Carre B, Delacotte J, Lemaitre F, Guille-Collignon M, Arbault S Anal Bioanal Chem. 2024; 416(30):7385-7394.

PMID: 38227016 DOI: 10.1007/s00216-024-05133-y.

References
1.
Zhu H, Jiang D, Zhu J . High-resolution imaging of catalytic activity of a single graphene sheet using electrochemiluminescence microscopy. Chem Sci. 2021; 12(13):4794-4799. PMC: 8179586. DOI: 10.1039/d0sc06967a. View

2.
Wang Y, Zhao W, Dai P, Lu H, Xu J, Pan J . Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis. Biosens Bioelectron. 2016; 86:683-689. DOI: 10.1016/j.bios.2016.07.067. View

3.
Chen A, Ma S, Zhuo Y, Chai Y, Yuan R . In Situ Electrochemical Generation of Electrochemiluminescent Silver Naonoclusters on Target-Cycling Synchronized Rolling Circle Amplification Platform for MicroRNA Detection. Anal Chem. 2016; 88(6):3203-10. DOI: 10.1021/acs.analchem.5b04578. View

4.
Liu Y, Wang M, Nie Y, Zhang Q, Ma Q . Sulfur Regulated Boron Nitride Quantum Dots Electrochemiluminescence with Amplified Surface Plasmon Coupling Strategy for BRAF Gene Detection. Anal Chem. 2019; 91(9):6250-6258. DOI: 10.1021/acs.analchem.9b00965. View

5.
Wang N, Wang Z, Chen L, Chen W, Quan Y, Cheng Y . Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chem Sci. 2019; 10(28):6815-6820. PMC: 6657406. DOI: 10.1039/c9sc01570a. View