» Articles » PMID: 7636036

Transneuronal Labeling of Neurons in the Adult Rat Brainstem and Spinal Cord After Injection of Pseudorabies Virus into the Urethra

Overview
Journal J Comp Neurol
Specialty Neurology
Date 1995 May 15
PMID 7636036
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Transneuronal tracing techniques were used to identify sites in the central nervous system involved in the neural control of urethral function. The distribution of virus-infected neurons was examined in the spinal cord and brainstem at various intervals (56-96 hours) following pseudorabies virus (PRV) injection into the urethra. In the lumbosacral (L6-S1) spinal cord at 56 hours, neurons containing PRV immunoreactivity (PRV-IR) were located in the region of the sacral parasympathetic nucleus (SPN), around the central canal, and in the dorsal commissure. Some animals also exhibited PRV-IR in cells in the L6 dorsolateral motor nucleus. At longer survival times (72-96 hours), PRV-IR cells were observed in the superficial and deeper laminae of the dorsal horn, and increased numbers of PRV-IR cells were consistently detected in the region of the SPN, around the central canal, and in the dorsal commissure. PRV-IR fiber-like staining also occurred along the lateral edge of the dorsal horn extending from Lissauer's tract to the region of the SPN. In rostral lumbar segments (L1-L2), PRV-IR cells were located in the region of the dorsal commissure and the intermediolateral cell nucleus (IML), around the central canal, and in the dorsal horn. After 72-84 hours, PRV-IR cells were also noted at more rostral levels of the neuraxis including the medulla, pons, midbrain, and diencephalon. At 72 hours, PRV-IR cells were consistently observed in Barrington's nucleus (pontine micturition center), nucleus raphe magnus (RMg), parapyramidal reticular formation, and the A5 and A7 regions. At 78-84 hours, additional regions exhibited PRV-IR cells, including the periaqueductal gray, locus coeruleus, the dorsal and ventral subcoeruleus alpha, and the red nucleus. A few cells were also located in the lateral hypothalamic area. This distribution of PRV-labeled cells in the spinal cord and brainstem is similar in many respects to the distribution of cells labeled in previous studies by PRV injection into the urinary bladder. This overlap of urethra and bladder neurons is consistent with the results of physiological experiments indicating a close coordination between the central nervous control of bladder and urethral activity.

Citing Articles

Aging-related NADPH diaphorase positive neurodegenerations in the sacral spinal cord of aged non-human primates.

Li Y, Wei Z, Jia Y, Hou W, Wang Y, Rao C Sci Rep. 2024; 14(1):27168.

PMID: 39511236 PMC: 11543675. DOI: 10.1038/s41598-024-77974-7.


Multichannel bridges and NSC synergize to enhance axon regeneration, myelination, synaptic reconnection, and recovery after SCI.

Nekanti U, Sakthivel P, Zahedi A, Creasman D, Nishi R, Dumont C NPJ Regen Med. 2024; 9(1):12.

PMID: 38499577 PMC: 10948859. DOI: 10.1038/s41536-024-00356-0.


De novo aging-related NADPH diaphorase positive megaloneurites in the sacral spinal cord of aged dogs.

Li Y, Jia Y, Hou W, Wei Z, Wen X, Tian Y Sci Rep. 2023; 13(1):22193.

PMID: 38092874 PMC: 10719289. DOI: 10.1038/s41598-023-49594-0.


Electrophysiology as a Tool to Decipher the Network Mechanism of Visceral Pain in Functional Gastrointestinal Disorders.

Alam M, Chen J Diagnostics (Basel). 2023; 13(4).

PMID: 36832115 PMC: 9955347. DOI: 10.3390/diagnostics13040627.


Transneuronal tracing to map connectivity in injured and transplanted spinal networks.

Fortino T, Randelman M, Hall A, Singh J, Bloom D, Engel E Exp Neurol. 2022; 351:113990.

PMID: 35085573 PMC: 9361710. DOI: 10.1016/j.expneurol.2022.113990.