Pseudomonas syringae pv. syringae 61 contains a 25-kb hrp cluster that is sufficient to elicit the hypersensitive response (HR) in nonhost plants. Previous studies have shown that mutations in complementation groups VIII, IX, and XI in the hrp cluster abolished the ability of the bacterium to cause the HR. The sequence of a 3.7-kb SmaI-SstI fragment covering groups VIII and IX now reveals five open reading frames (ORFs) in the same transcript, designated as hrpU, hrpW, hrpO, hrpX, and hrpY, and predicted to encode proteins of 14,795, 23,211, 9,381, 28,489, and 39,957 Da, respectively. The hrpU, hrpW, hrpO, hrpX, and hrpY genes are homologous and arranged colinearly with the yscQ/spa33/spaO, yscR/spa24/spaP, yscS/spa9/spaQ, yscT/spa29/spaR, and yscU/spa40/spaS genes of Yersinia spp., Shigella flexneri, and Salmonella typhimurium, respectively. These proteins also show similarity to Fli/Flh proteins of Bacillus and enteric bacteria. The Ysc and Spa proteins are involved in the secretion of virulence factors, like the Yop and Ipa proteins. Fli/Flh proteins are involved in flagellar biogenesis. The sequence of a 2.9-kb EcoRV-EcoRI DNA fragment containing mainly group XI revealed five ORFs, designated hrpC, hrpD, hrpE, hrpF, and hrpG, predicted to encode proteins of 29,096, 15,184, 21,525, 7,959, and 13,919 Da, respectively. The first three genes belong to an operon containing hrpZ, which encodes an extracellular protein that elicits the HR. hrpF and hrpG are two potential ORFs upstream of hrpH in the hrpH operon. HrpC is homologous to Yersinia YscJ, Pseudomonas solanacearum HrpI, Xanthomonas compestris pv. vesicatoria HrpB3, and Rhizobium fredii NolT. HrpE is similar to YscL of Yersinia spp. P. s. pv. syringae 61 Hrp proteins are most similar to Ysc proteins among those homologs. TnphoA insertions in hrpC, hrpE, hrpW, hrpX, and hrpY abolished the ability of P. s.pv. syringae 61 to secrete HrpZ (harpinPss), as determined by immunoblot analysis of cell-bound and culture supernatant fractions. Thus, many of the proteins required for flagellar biogenesis and virulence protein secretion in plant and animal pathogens may have a common ancestry.
Citing Articles
Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants.
Penazova E, Dvorak M, Ragasova L, Kiss T, Pecenka J, cechova J
PLoS One. 2020; 15(1):e0227559.
PMID: 31910230
PMC: 6946519.
DOI: 10.1371/journal.pone.0227559.
The pathogenicity factor HrpF interacts with HrpA and HrpG to modulate type III secretion system (T3SS) function and t3ss expression in Pseudomonas syringae pv. averrhoi.
Huang Y, Lin Y, Wei C, Deng W, Huang H
Mol Plant Pathol. 2015; 17(7):1080-94.
PMID: 26638129
PMC: 6638529.
DOI: 10.1111/mpp.12349.
Identification and molecular characterization of YsaL (Ye3555): a novel negative regulator of YsaN ATPase in type three secretion system of enteropathogenic bacteria Yersinia enterocolitica.
Chatterjee R, Halder P, Datta S
PLoS One. 2013; 8(10):e75028.
PMID: 24124464
PMC: 3790809.
DOI: 10.1371/journal.pone.0075028.
Effective identification of bacterial type III secretion signals using joint element features.
Wang Y, Sun M, Bao H, Zhang Q, Guo D
PLoS One. 2013; 8(4):e59754.
PMID: 23593149
PMC: 3617162.
DOI: 10.1371/journal.pone.0059754.
Degeneration of hrpZ gene in Pseudomonas syringae pv. tabaci to evade tobacco defence: an arms race between tobacco and its bacterial pathogen.
Tsunemi K, Taguchi F, Marutani M, Watanabe-Sugimoto M, Inagaki Y, Toyoda K
Mol Plant Pathol. 2011; 12(7):709-14.
PMID: 21726372
PMC: 6640228.
DOI: 10.1111/j.1364-3703.2011.00705.x.
From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity.
Mansfield J
Mol Plant Pathol. 2009; 10(6):721-34.
PMID: 19849780
PMC: 6640528.
DOI: 10.1111/j.1364-3703.2009.00576.x.
Pseudomonas syringae HrpP Is a type III secretion substrate specificity switch domain protein that is translocated into plant cells but functions atypically for a substrate-switching protein.
Morello J, Collmer A
J Bacteriol. 2009; 191(9):3120-31.
PMID: 19270091
PMC: 2681801.
DOI: 10.1128/JB.01623-08.
Molecular evolution of pathogenicity-island genes in Pseudomonas viridiflava.
Araki H, Innan H, Kreitman M, Bergelson J
Genetics. 2007; 177(2):1031-41.
PMID: 17720907
PMC: 2034611.
DOI: 10.1534/genetics.107.077925.
Identification of Pseudomonas syringae pv. syringae 61 type III secretion system Hrp proteins that can travel the type III pathway and contribute to the translocation of effector proteins into plant cells.
Ramos A, Morello J, Ravindran S, Deng W, Huang H, Collmer A
J Bacteriol. 2007; 189(15):5773-8.
PMID: 17526708
PMC: 1951817.
DOI: 10.1128/JB.00435-07.
PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000.
Chatterjee A, Cui Y, Hasegawa H, Chatterjee A
Appl Environ Microbiol. 2007; 73(11):3684-94.
PMID: 17400767
PMC: 1932703.
DOI: 10.1128/AEM.02445-06.
Characterization of the hrp pathogenicity cluster of Erwinia carotovora subsp. carotovora: high basal level expression in a mutant is associated with reduced virulence.
Lehtimaki S, Rantakari A, Routtu J, Tuikkala A, Li J, Virtaharju O
Mol Genet Genomics. 2003; 270(3):263-72.
PMID: 14576934
DOI: 10.1007/s00438-003-0905-4.
Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin(pss)-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS).
Dayakar B, Lin H, Chen C, Ger M, Lee B, Pai C
Plant Mol Biol. 2003; 51(6):913-24.
PMID: 12777051
DOI: 10.1023/a:1023061303755.
Bacterial Pathogens in Plants: Life up against the Wall.
Alfano J, Collmer A
Plant Cell. 1996; 8(10):1683-1698.
PMID: 12239358
PMC: 161307.
DOI: 10.1105/tpc.8.10.1683.
Elicitation of Plant Hypersensitive Response by Bacteria.
He S
Plant Physiol. 1996; 112(3):865-869.
PMID: 12226424
PMC: 158012.
DOI: 10.1104/pp.112.3.865.
The Active Oxygen Response of Cell Suspensions to Incompatible Bacteria Is Not Sufficient to Cause Hypersensitive Cell Death.
Glazener J, Orlandi E, Baker C
Plant Physiol. 1996; 110(3):759-763.
PMID: 12226215
PMC: 157774.
DOI: 10.1104/pp.110.3.759.
Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice.
Hendrickson E, Plotnikova J, Rahme L, Ausubel F
J Bacteriol. 2001; 183(24):7126-34.
PMID: 11717271
PMC: 95561.
DOI: 10.1128/JB.183.24.7126-7134.2001.
HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro.
Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki A
Proc Natl Acad Sci U S A. 2001; 98(1):289-94.
PMID: 11134504
PMC: 14583.
DOI: 10.1073/pnas.98.1.289.
Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte.
Hirano S, Upper C
Microbiol Mol Biol Rev. 2000; 64(3):624-53.
PMID: 10974129
PMC: 99007.
DOI: 10.1128/MMBR.64.3.624-653.2000.
Pseudomonas syringae Hrp type III secretion system and effector proteins.
Collmer A, Badel J, Charkowski A, Deng W, Fouts D, Ramos A
Proc Natl Acad Sci U S A. 2000; 97(16):8770-7.
PMID: 10922033
PMC: 34010.
DOI: 10.1073/pnas.97.16.8770.
The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription.
Hendrickson E, Guevera P, Ausubel F
J Bacteriol. 2000; 182(12):3508-16.
PMID: 10852884
PMC: 101944.
DOI: 10.1128/JB.182.12.3508-3516.2000.