Enhanced Clastogenicity of Contaminated Groundwater Following UV Irradiation Detected by the Tradescantia Micronucleus Assay
Overview
Authors
Affiliations
The Tradescantia micronucleus (Trad-MCN) assay was used to determine clastogenic effects of contaminated groundwater collected near a hazardous waste landfill. Water samples were taken from a purification plant (activated charcoal filtration, UV irradiation) which was built to avoid groundwater contamination by this landfill. Five series of experiments were conducted during approximately 4 months. In addition, water samples were irradiated under laboratory conditions with increasing doses of UV light. Several field water samples gave positive, dose-dependent effects before filtration and irradiation. Maximal values (6.1 +/- 4.7 micronuclei (MCN)/100 tetrads) were six-fold above controls. UV irradiation of activated charcoal-filtered water resulted in an enhancement of MCN frequencies. Exposure of groundwater to UV irradiation in the laboratory led to a dose-dependent increase of micronuclei. At the highest dose (1500 J/m2) the MCN frequency was more than six times higher than in the unirradiated sample (5.4 +/- 1.0 vs. 0.8 +/- 0.4 MCN/100 tetrads). The clastogenicity of UV-irradiated samples decreased with a half-life of approximately 1 day. Irradiation of tap water did not increase the MCN frequency. Our results indicate that irradiation of water with UV light for disinfection purposes might lead to a transiently increased genotoxicity of chemically polluted water samples.
Occurrence and Control of Genotoxins in Drinking Water: A Monitoring Proposal.
Ceretti E, Moretti M, Zerbini I, Villarini M, Zani C, Monarca S J Public Health Res. 2017; 5(3):769.
PMID: 28083525 PMC: 5206778. DOI: 10.4081/jphr.2016.769.