Khatkar P, Mensah G, Ning S, Cowen M, Kim Y, Williams A
Pharmaceuticals (Basel). 2024; 17(1).
PMID: 38256867
PMC: 10819208.
DOI: 10.3390/ph17010033.
Tang H, Peng J, Jiang X, Peng S, Wang F, Weng X
Biosensors (Basel). 2023; 13(2).
PMID: 36832059
PMC: 9954185.
DOI: 10.3390/bios13020293.
Mi L, Yu Q, Karunanayake Mudiyanselage A, Wu R, Sun Z, Zheng R
ACS Sens. 2023; 8(1):308-316.
PMID: 36608281
PMC: 10630924.
DOI: 10.1021/acssensors.2c02213.
Iyer K, Mitra A, Mitra D
Virus Res. 2022; 324:199034.
PMID: 36581045
PMC: 10194149.
DOI: 10.1016/j.virusres.2022.199034.
Kwon S, Giessen T
ACS Synth Biol. 2022; 11(10):3504-3515.
PMID: 36170610
PMC: 9944510.
DOI: 10.1021/acssynbio.2c00391.
A structure-based mechanism for displacement of the HEXIM adapter from 7SK small nuclear RNA.
Pham V, Gao M, Meagher J, Smith J, DSouza V
Commun Biol. 2022; 5(1):819.
PMID: 35970937
PMC: 9378691.
DOI: 10.1038/s42003-022-03734-w.
RNA-Binding Macrocyclic Peptides.
Pal S, t Hart P
Front Mol Biosci. 2022; 9:883060.
PMID: 35517859
PMC: 9062085.
DOI: 10.3389/fmolb.2022.883060.
Deep structural insights into RNA-binding disordered protein regions.
Zeke A, Schad E, Horvath T, Abukhairan R, Szabo B, Tantos A
Wiley Interdiscip Rev RNA. 2022; 13(5):e1714.
PMID: 35098694
PMC: 9539567.
DOI: 10.1002/wrna.1714.
Conformational dynamics and energetics of viral RNA recognition by lab-evolved proteins.
Kumar A, Vashisth H
Phys Chem Chem Phys. 2021; 23(43):24773-24779.
PMID: 34714308
PMC: 8579469.
DOI: 10.1039/d1cp03822b.
Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides.
Levintov L, Vashisth H
Biophys J. 2021; 120(22):5060-5073.
PMID: 34710377
PMC: 8633718.
DOI: 10.1016/j.bpj.2021.10.007.
Probing RNA Conformational Equilibria within the Functional Cellular Context.
Ganser L, Chu C, Bogerd H, Kelly M, Cullen B, Al-Hashimi H
Cell Rep. 2020; 30(8):2472-2480.e4.
PMID: 32101729
PMC: 7941409.
DOI: 10.1016/j.celrep.2020.02.004.
Design of RNA-targeting macrocyclic peptides.
Walker M, Varani G
Methods Enzymol. 2019; 623:339-372.
PMID: 31239053
PMC: 6814141.
DOI: 10.1016/bs.mie.2019.04.029.
The glucocorticoid receptor DNA-binding domain recognizes RNA hairpin structures with high affinity.
Parsonnet N, Lammer N, Holmes Z, Batey R, Wuttke D
Nucleic Acids Res. 2019; 47(15):8180-8192.
PMID: 31147715
PMC: 6735959.
DOI: 10.1093/nar/gkz486.
Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery.
Chavali S, Bonn-Breach R, Wedekind J
J Biol Chem. 2019; 294(24):9326-9341.
PMID: 31080171
PMC: 6579462.
DOI: 10.1074/jbc.REV119.006860.
An ultra-high affinity ligand of HIV-1 TAR reveals the RNA structure recognized by P-TEFb.
Shortridge M, Wille P, Jones A, Davidson A, Bogdanovic J, Arts E
Nucleic Acids Res. 2018; 47(3):1523-1531.
PMID: 30481318
PMC: 6379670.
DOI: 10.1093/nar/gky1197.
HIV-1 Tat interactions with cellular 7SK and viral TAR RNAs identifies dual structural mimicry.
Pham V, Salguero C, Khan S, Meagher J, Brown W, Humbert N
Nat Commun. 2018; 9(1):4266.
PMID: 30323330
PMC: 6189040.
DOI: 10.1038/s41467-018-06591-6.
Global pairwise RNA interaction landscapes reveal core features of protein recognition.
Zhou Q, Kunder N, de la Paz J, Lasley A, Bhat V, Morcos F
Nat Commun. 2018; 9(1):2511.
PMID: 29955037
PMC: 6023938.
DOI: 10.1038/s41467-018-04729-0.
Evolution of a designed protein assembly encapsulating its own RNA genome.
Butterfield G, Lajoie M, Gustafson H, Sellers D, Nattermann U, Ellis D
Nature. 2017; 552(7685):415-420.
PMID: 29236688
PMC: 5927965.
DOI: 10.1038/nature25157.
The SMAD3 transcription factor binds complex RNA structures with high affinity.
Dickey T, Pyle A
Nucleic Acids Res. 2017; 45(20):11980-11988.
PMID: 29036649
PMC: 5714123.
DOI: 10.1093/nar/gkx846.
6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase.
Chen J, Wassarman K, Feng S, Leon K, Feklistov A, Winkelman J
Mol Cell. 2017; 68(2):388-397.e6.
PMID: 28988932
PMC: 5683422.
DOI: 10.1016/j.molcel.2017.09.006.