» Articles » PMID: 29955037

Global Pairwise RNA Interaction Landscapes Reveal Core Features of Protein Recognition

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Jun 30
PMID 29955037
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA-protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein-RNA recognition at single nucleotide resolution.

Citing Articles

Simultaneous enhancement of multiple functional properties using evolution-informed protein design.

Fram B, Su Y, Truebridge I, Riesselman A, Ingraham J, Passera A Nat Commun. 2024; 15(1):5141.

PMID: 38902262 PMC: 11190266. DOI: 10.1038/s41467-024-49119-x.


RNA-binding proteins in pain.

Smith P, Campbell Z Wiley Interdiscip Rev RNA. 2024; 15(2):e1843.

PMID: 38576117 PMC: 11003723. DOI: 10.1002/wrna.1843.


In vivo functional phenotypes from a computational epistatic model of evolution.

Alvarez S, Nartey C, Mercado N, de la Paz J, Huseinbegovic T, Morcos F Proc Natl Acad Sci U S A. 2024; 121(6):e2308895121.

PMID: 38285950 PMC: 10861889. DOI: 10.1073/pnas.2308895121.


Coevolutionary Information Captures Catalytic Functions and Reveals Divergent Roles of Terpene Synthase Interdomain Connections.

Nartey C, Koo H, Laurendon C, Shaik H, OMaille P, Noel J Biochemistry. 2024; 63(3):355-366.

PMID: 38206111 PMC: 10851433. DOI: 10.1021/acs.biochem.3c00578.


Latent generative landscapes as maps of functional diversity in protein sequence space.

Ziegler C, Martin J, Sinner C, Morcos F Nat Commun. 2023; 14(1):2222.

PMID: 37076519 PMC: 10113739. DOI: 10.1038/s41467-023-37958-z.


References
1.
De Gregorio E, Preiss T, Hentze M . Translation driven by an eIF4G core domain in vivo. EMBO J. 1999; 18(17):4865-74. PMC: 1171558. DOI: 10.1093/emboj/18.17.4865. View

2.
Kozak M . Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 2005; 361:13-37. DOI: 10.1016/j.gene.2005.06.037. View

3.
Ouyang Z, Snyder M, Chang H . SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res. 2012; 23(2):377-87. PMC: 3561878. DOI: 10.1101/gr.138545.112. View

4.
Gueudre T, Baldassi C, Zamparo M, Weigt M, Pagnani A . Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc Natl Acad Sci U S A. 2016; 113(43):12186-12191. PMC: 5087065. DOI: 10.1073/pnas.1607570113. View

5.
Muller-McNicoll M, Neugebauer K . How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet. 2013; 14(4):275-87. DOI: 10.1038/nrg3434. View