Xia R, Chen X, Engel T, Moore T
Trends Cogn Sci. 2024; 28(6):554-567.
PMID: 38388258
PMC: 11153008.
DOI: 10.1016/j.tics.2024.01.005.
Kehoe D, Fallah M
Front Syst Neurosci. 2023; 17:1251933.
PMID: 37899790
PMC: 10600481.
DOI: 10.3389/fnsys.2023.1251933.
Qian N, Goldberg M, Zhang M
Front Comput Neurosci. 2023; 16:1060757.
PMID: 36714528
PMC: 9880053.
DOI: 10.3389/fncom.2022.1060757.
Lowe K, Zinke W, Cosman J, Schall J
Cereb Cortex. 2022; 32(22):5083-5107.
PMID: 35176752
PMC: 9989351.
DOI: 10.1093/cercor/bhab533.
Piette C, Vandecasteele M, Bosch-Bouju C, Goubard V, Paille V, Cui Y
Front Synaptic Neurosci. 2021; 13:725880.
PMID: 34621162
PMC: 8490863.
DOI: 10.3389/fnsyn.2021.725880.
Neural mechanism of priming in visual search.
Westerberg J, Schall J
Atten Percept Psychophys. 2020; 83(2):587-602.
PMID: 32914342
PMC: 7886967.
DOI: 10.3758/s13414-020-02118-8.
Frontal eye field neurons selectively signal the reward value of prior actions.
Chen X, Zirnsak M, Vega G, Moore T
Prog Neurobiol. 2020; 195:101881.
PMID: 32628973
PMC: 7736534.
DOI: 10.1016/j.pneurobio.2020.101881.
Timing Determines Tuning: A Rapid Spatial Transformation in Superior Colliculus Neurons during Reactive Gaze Shifts.
Sadeh M, Sajad A, Wang H, Yan X, Crawford J
eNeuro. 2019; 7(1).
PMID: 31792117
PMC: 6944480.
DOI: 10.1523/ENEURO.0359-18.2019.
A Rhythmic Theory of Attention.
Fiebelkorn I, Kastner S
Trends Cogn Sci. 2018; 23(2):87-101.
PMID: 30591373
PMC: 6343831.
DOI: 10.1016/j.tics.2018.11.009.
Neural Basis of Cognitive Control over Movement Inhibition: Human fMRI and Primate Electrophysiology Evidence.
Xu K, Anderson B, Emeric E, Sali A, Stuphorn V, Yantis S
Neuron. 2017; 96(6):1447-1458.e6.
PMID: 29224723
PMC: 5747365.
DOI: 10.1016/j.neuron.2017.11.010.
A Trial-by-Trial Window into Sensorimotor Transformations in the Human Motor Periphery.
Gu C, Wood D, Gribble P, Corneil B
J Neurosci. 2016; 36(31):8273-82.
PMID: 27488645
PMC: 6601959.
DOI: 10.1523/JNEUROSCI.0899-16.2016.
Coding of attention across the human intraparietal sulcus.
Connolly J, Kentridge R, Cavina-Pratesi C
Exp Brain Res. 2015; 234(3):917-30.
PMID: 26677082
PMC: 4751187.
DOI: 10.1007/s00221-015-4507-2.
Distinct dynamics of ramping activity in the frontal cortex and caudate nucleus in monkeys.
Ding L
J Neurophysiol. 2015; 114(3):1850-61.
PMID: 26224774
PMC: 4575978.
DOI: 10.1152/jn.00395.2015.
Effector specificity in macaque frontal and parietal cortex.
Premereur E, Janssen P, Vanduffel W
J Neurosci. 2015; 35(8):3446-59.
PMID: 25716844
PMC: 6605566.
DOI: 10.1523/JNEUROSCI.3710-14.2015.
Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions.
Funahashi S
Front Integr Neurosci. 2014; 8:54.
PMID: 25071482
PMC: 4074701.
DOI: 10.3389/fnint.2014.00054.
Topographic organization in the brain: searching for general principles.
Patel G, Kaplan D, Snyder L
Trends Cogn Sci. 2014; 18(7):351-63.
PMID: 24862252
PMC: 4074559.
DOI: 10.1016/j.tics.2014.03.008.
Prefrontal neurons of opposite spatial preference display distinct target selection dynamics.
Lennert T, Martinez-Trujillo J
J Neurosci. 2013; 33(22):9520-9.
PMID: 23719818
PMC: 6618559.
DOI: 10.1523/JNEUROSCI.5156-12.2013.
The developmental basis of visuomotor capabilities and the causal nature of motor clumsiness to cognitive and empathic dysfunction.
Vakalopoulos C
Cerebellum. 2012; 12(2):212-23.
PMID: 22991045
DOI: 10.1007/s12311-012-0416-0.
Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields.
Shin S, Sommer M
J Neurophysiol. 2012; 108(8):2144-59.
PMID: 22815407
PMC: 3545025.
DOI: 10.1152/jn.00204.2012.
Experimental strategies for investigating psychostimulant drug actions and prefrontal cortical function in ADHD and related attention disorders.
Agster K, Clark B, Gao W, Shumsky J, Wang H, Berridge C
Anat Rec (Hoboken). 2011; 294(10):1698-712.
PMID: 21901844
PMC: 3514444.
DOI: 10.1002/ar.21403.