Bunn H
J Biol Chem. 2013; 288(7):5062-71.
PMID: 23300076
PMC: 3576109.
DOI: 10.1074/jbc.X113.451591.
Ji F, Jung J, Gronenborn A
Biochemistry. 2012; 51(12):2588-96.
PMID: 22394327
PMC: 3326406.
DOI: 10.1021/bi300199d.
Huang C, Wang Y, Tsai C, Chen Y, Lee J, Chiou S
Mol Vis. 2011; 17:186-98.
PMID: 21264232
PMC: 3025096.
Mendez J, Xie J, Aguilar-Hernandez M, Mendez-Valenzuela V
Mol Cell Biochem. 2010; 344(1-2):185-93.
PMID: 20680411
DOI: 10.1007/s11010-010-0541-3.
Chiou S, Huang C, Lee I, Wang Y, Liu N, Tsay Y
Mol Vis. 2010; 16:294-302.
PMID: 20182557
PMC: 2827344.
Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin.
Moreau K, King J
J Biol Chem. 2009; 284(48):33285-95.
PMID: 19758984
PMC: 2785171.
DOI: 10.1074/jbc.M109.031344.
Age-related compaction of lens fibers affects the structure and optical properties of rabbit lenses.
Al-Khudari S, Donohue S, Al-Ghoul W, Al-Ghoul K
BMC Ophthalmol. 2007; 7:19.
PMID: 18096063
PMC: 2249566.
DOI: 10.1186/1471-2415-7-19.
Crystallization and preliminary crystallographic analysis of bacterial fructosyl amino acid oxidase.
Sakaue R, Nakatsu T, Yamaguchi Y, Kato H, Kajiyama N
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006; 61(Pt 2):196-8.
PMID: 16510992
PMC: 1952257.
DOI: 10.1107/S1744309104034372.
Thermostabilization of bacterial fructosyl-amino acid oxidase by directed evolution.
Sakaue R, Kajiyama N
Appl Environ Microbiol. 2003; 69(1):139-45.
PMID: 12513988
PMC: 152437.
DOI: 10.1128/AEM.69.1.139-145.2002.
alpha-Crystallin chaperone function in diabetic rat and human lenses.
Thampi P, Zarina S, Abraham E
Mol Cell Biochem. 2002; 229(1-2):113-8.
PMID: 11936835
DOI: 10.1023/a:1017980713089.
alpha-Crystallin acting as a molecular chaperonin against photodamage by UV irradiation.
Lee J, Liao J, Wu S, Chiou S
J Protein Chem. 1997; 16(4):283-9.
PMID: 9188067
DOI: 10.1023/a:1026305025816.
[The effect of Maillard reaction products on enzyme reactions].
Schumacher D, Kroh L
Z Ernahrungswiss. 1996; 35(3):213-25.
PMID: 9019913
DOI: 10.1007/BF01625684.
Crystallin composition of human cataractous lens may be modulated by protein glycation.
Ramalho J, Marques C, Pereira P, Mota M
Graefes Arch Clin Exp Ophthalmol. 1996; 234 Suppl 1:S232-8.
PMID: 8871180
DOI: 10.1007/BF02343078.
Protein glycation and in vivo distribution of human lens fluorescence.
Mota M, Carvalho P, Ramalho J, Cardoso E, Gaspar A, Abreu G
Int Ophthalmol. 1994; 18(4):187-93.
PMID: 7797380
DOI: 10.1007/BF00951795.
Increased glycosylation of proteins from cataractous lenses in diabetes.
Kasai K, Nakamura T, Kase N, Hiraoka T, Suzuki R, KOGURE F
Diabetologia. 1983; 25(1):36-8.
PMID: 6884614
DOI: 10.1007/BF00251894.
Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus.
Garlick R, Mazer J, Chylack Jr L, Tung W, BUNN H
J Clin Invest. 1984; 74(5):1742-9.
PMID: 6438156
PMC: 425353.
DOI: 10.1172/JCI111592.
The role of ascorbic acid in senile cataract.
Bensch K, FLEMING J, Lohmann W
Proc Natl Acad Sci U S A. 1985; 82(21):7193-6.
PMID: 3864154
PMC: 390815.
DOI: 10.1073/pnas.82.21.7193.
Non-enzymatic glycosylation in human diabetic lens crystallins.
Liang J, Hershorin L, Chylack Jr L
Diabetologia. 1986; 29(4):225-8.
PMID: 3710014
DOI: 10.1007/BF00454880.
Physicochemical characterization of gamma-crystallins from bovine lens--hydrodynamic and biochemical properties.
Chiou S, Azari P, Himmel M
J Protein Chem. 1988; 7(1):67-80.
PMID: 3255364
DOI: 10.1007/BF01025415.
N-linked protein glycosylation in the rat parotid gland during aging.
Kousvelari E, Banerjee D, Murty L, Baum B
Mech Ageing Dev. 1988; 42(2):173-81.
PMID: 2834612
PMC: 7130591.
DOI: 10.1016/0047-6374(88)90072-3.