» Articles » PMID: 7077288

Arterial Branching in Man and Monkey

Overview
Journal J Gen Physiol
Specialty Physiology
Date 1982 Mar 1
PMID 7077288
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Vessel diameters and branching angles are measured from a large number of arterial bifurcations in the retina of a normal human subject and in that of a rhesus monkey. The results are compared with each other and with theoretical results on this subject.

Citing Articles

The bifurcation angle is associated with the progression of saccular aneurysms.

Shimizu K, Kataoka H, Imai H, Miyata T, Okada A, Sakai N Sci Rep. 2022; 12(1):7409.

PMID: 35523805 PMC: 9076676. DOI: 10.1038/s41598-022-11160-5.


The narrowing of dendrite branches across nodes follows a well-defined scaling law.

Liao M, Liang X, Howard J Proc Natl Acad Sci U S A. 2021; 118(27).

PMID: 34215693 PMC: 8271565. DOI: 10.1073/pnas.2022395118.


The structural properties of carotid arteries in carotid artery diseases - a retrospective computed tomography angiography study.

Ozdemir H Pol J Radiol. 2020; 85:e82-e89.

PMID: 32467741 PMC: 7247020. DOI: 10.5114/pjr.2020.93367.


Blood flow rate and wall shear stress in seven major cephalic arteries of humans.

Seymour R, Hu Q, Snelling E J Anat. 2019; 236(3):522-530.

PMID: 31710396 PMC: 7018638. DOI: 10.1111/joa.13119.


Direct imaging of capillaries reveals the mechanism of arteriovenous interlacing in the chick chorioallantoic membrane.

Richard S, Brun A, Tedesco A, Gallois B, Taghi N, Dantan P Commun Biol. 2018; 1:235.

PMID: 30588514 PMC: 6303259. DOI: 10.1038/s42003-018-0229-x.


References
1.
Uylings H . Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol. 1977; 39(5):509-20. DOI: 10.1007/BF02461198. View

2.
Zamir M . Three-dimensional aspects of arterial branching. J Theor Biol. 1981; 90(4):457-76. DOI: 10.1016/0022-5193(81)90299-x. View

3.
Kamiya A, Togawa T . Optimal branching structure of the vascular tree. Bull Math Biophys. 1972; 34(4):431-8. DOI: 10.1007/BF02476705. View

4.
Kamiya A, Togawa T, Yamamoto A . Theoretical relationship between the optimal models of the vascular tree. Bull Math Biol. 1974; 36(3):311-23. DOI: 10.1007/BF02461331. View

5.
Murray C . The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad Sci U S A. 1926; 12(3):207-14. PMC: 1084489. DOI: 10.1073/pnas.12.3.207. View