Singer P, Yee B
Front Cell Neurosci. 2023; 17:1120532.
PMID: 36998267
PMC: 10043328.
DOI: 10.3389/fncel.2023.1120532.
R G A
Toxicol Res (Camb). 2019; 8(2):196-205.
PMID: 30997021
PMC: 6415617.
DOI: 10.1039/c8tx00227d.
Cova I, Leta V, Mariani C, Pantoni L, Pomati S
Psychopharmacology (Berl). 2019; 236(2):561-572.
PMID: 30706099
DOI: 10.1007/s00213-019-5172-0.
Correa M, SanMiguel N, Lopez-Cruz L, Carratala-Ros C, Olivares-Garcia R, Salamone J
Front Psychiatry. 2018; 9:411.
PMID: 30237771
PMC: 6135917.
DOI: 10.3389/fpsyt.2018.00411.
Oduro-Mensah D, Ocloo A, Lowor S, Mingle C, Okine L, Adamafio N
Microb Cell Fact. 2018; 17(1):79.
PMID: 29778093
PMC: 5960160.
DOI: 10.1186/s12934-018-0931-x.
Measurement of caffeine and its three primary metabolites in human plasma by HPLC-ESI-MS/MS and clinical application.
Chen F, Hu Z, Parker R, Laizure S
Biomed Chromatogr. 2016; 31(6).
PMID: 27864843
PMC: 5415443.
DOI: 10.1002/bmc.3900.
Psychopharmacology of theobromine in healthy volunteers.
Baggott M, Childs E, Hart A, de Bruin E, Palmer A, Wilkinson J
Psychopharmacology (Berl). 2013; 228(1):109-18.
PMID: 23420115
PMC: 3672386.
DOI: 10.1007/s00213-013-3021-0.
Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists.
Randall P, Nunes E, Janniere S, Stopper C, Farrar A, Sager T
Psychopharmacology (Berl). 2011; 216(2):173-86.
PMID: 21347642
PMC: 3522121.
DOI: 10.1007/s00213-011-2198-3.
Discriminative stimulus and subjective effects of theobromine and caffeine in humans.
Mumford G, Evans S, Kaminski B, Preston K, Sannerud C, Silverman K
Psychopharmacology (Berl). 1994; 115(1-2):1-8.
PMID: 7862879
DOI: 10.1007/BF02244744.
Reduced proconvulsant activity of caffeine in rats after a series of electroconvulsive seizures.
Francis A, Fochtmann L
Psychopharmacology (Berl). 1995; 119(1):99-104.
PMID: 7675957
DOI: 10.1007/BF02246060.
Caffeine dependence: fact or fiction?.
Strain E, Griffiths R
J R Soc Med. 1995; 88(8):437-40.
PMID: 7562825
PMC: 1295296.
Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines.
Daly J, Butts-Lamb P, Padgett W
Cell Mol Neurobiol. 1983; 3(1):69-80.
PMID: 6309393
PMC: 11572908.
DOI: 10.1007/BF00734999.
Differential effects of methylxanthines on local cerebral blood flow and glucose utilization in the conscious rat.
Grome J, Stefanovich V
Naunyn Schmiedebergs Arch Pharmacol. 1986; 333(2):172-7.
PMID: 3748197
DOI: 10.1007/BF00506522.
Psychomotor stimulant effects of methylxanthines in squirrel monkeys: relation to adenosine antagonism.
Spealman R
Psychopharmacology (Berl). 1988; 95(1):19-24.
PMID: 3133696
DOI: 10.1007/BF00212759.
Caffeine physical dependence: a review of human and laboratory animal studies.
Griffiths R, Woodson P
Psychopharmacology (Berl). 1988; 94(4):437-51.
PMID: 3131789
DOI: 10.1007/BF00212836.
Pharmacologic specificity of tolerance to caffeine-induced stimulation of locomotor activity.
Finn I, Holtzman S
Psychopharmacology (Berl). 1987; 93(4):428-34.
PMID: 3124175
DOI: 10.1007/BF00207230.
Caffeine withdrawal affects central adenosine receptors but not benzodiazepine receptors.
Boulenger J, Marangos P
J Neural Transm Gen Sect. 1989; 78(1):9-15.
PMID: 2547026
DOI: 10.1007/BF01247109.
A concurrently available nondrug reinforcer prevents the acquisition or decreases the maintenance of cocaine-reinforced behavior.
Carroll M, Lac S, Nygaard S
Psychopharmacology (Berl). 1989; 97(1):23-9.
PMID: 2496421
DOI: 10.1007/BF00443407.
Effects of food FR and food deprivation on disruptions in food-maintained performance of monkeys during phencyclidine withdrawal.
Carroll M, Carmona G
Psychopharmacology (Berl). 1991; 104(2):143-9.
PMID: 1876658
DOI: 10.1007/BF02244169.
Methylxanthine-induced attenuation of pecking in chickens.
Zarrindast M, Nasir T
Br J Pharmacol. 1991; 104(2):327-30.
PMID: 1797301
PMC: 1908538.
DOI: 10.1111/j.1476-5381.1991.tb12430.x.