Del Rio Flores A, Zhai R, Kastner D, Seshadri K, Yang S, De Matias K
Nat Chem. 2024; 16(12):2066-2075.
PMID: 39333393
PMC: 11611683.
DOI: 10.1038/s41557-024-01646-2.
Aguirre-Vazquez A, Castorena-Torres F, Silva-Ramirez B, Penuelas-Urquides K, Camacho-Moll M, Salazar-Olivo L
Stem Cell Res Ther. 2023; 14(1):42.
PMID: 36927767
PMC: 10021945.
DOI: 10.1186/s13287-023-03268-w.
Mossine V, Kelley S, Mawhinney T
IUCrdata. 2023; 8(Pt 2):x230169.
PMID: 36911079
PMC: 9993890.
DOI: 10.1107/S2414314623001694.
Malinowski Z, Fornal E, Sumara A, Kontek R, Bukowski K, Pasternak B
Beilstein J Org Chem. 2021; 17:558-568.
PMID: 33727979
PMC: 7934800.
DOI: 10.3762/bjoc.17.50.
Han L, Ryu R, Cusumano M, Easterling T, Phillips B, Risler L
J Clin Pharmacol. 2019; 59(12):1678-1689.
PMID: 31257615
PMC: 6813860.
DOI: 10.1002/jcph.1477.
Systemic Acrolein Elevations in Mice With Experimental Autoimmune Encephalomyelitis and Patients With Multiple Sclerosis.
Tully M, Tang J, Zheng L, Acosta G, Tian R, Hayward L
Front Neurol. 2018; 9:420.
PMID: 29963001
PMC: 6013577.
DOI: 10.3389/fneur.2018.00420.
Dimercaprol is an acrolein scavenger that mitigates acrolein-mediated PC-12 cells toxicity and reduces acrolein in rat following spinal cord injury.
Tian R, Shi R
J Neurochem. 2017; 141(5):708-720.
PMID: 28301040
PMC: 5429218.
DOI: 10.1111/jnc.14025.
Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury.
Chen Z, Park J, Butler B, Acosta G, Vega-Alvarez S, Zheng L
J Neurochem. 2016; 138(2):328-38.
PMID: 27060873
PMC: 4936922.
DOI: 10.1111/jnc.13639.
Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury.
Kabu S, Gao Y, Kwon B, Labhasetwar V
J Control Release. 2015; 219:141-154.
PMID: 26343846
PMC: 4656085.
DOI: 10.1016/j.jconrel.2015.08.060.
Acrolein as a novel therapeutic target for motor and sensory deficits in spinal cord injury.
Park J, Muratori B, Shi R
Neural Regen Res. 2014; 9(7):677-83.
PMID: 25206871
PMC: 4146266.
DOI: 10.4103/1673-5374.131564.
Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage.
Park J, Zheng L, Marquis A, Walls M, Duerstock B, Pond A
J Neurochem. 2013; 129(2):339-49.
PMID: 24286176
PMC: 3980042.
DOI: 10.1111/jnc.12628.
Acrolein-mediated injury in nervous system trauma and diseases.
Shi R, Rickett T, Sun W
Mol Nutr Food Res. 2011; 55(9):1320-31.
PMID: 21823221
PMC: 3517031.
DOI: 10.1002/mnfr.201100217.
Hydralazine modifies Aβ fibril formation and prevents modification by lipids in vitro.
Maheshwari M, Roberts J, Desutter B, Duong K, Tingling J, Fawver J
Biochemistry. 2010; 49(49):10371-80.
PMID: 21058733
PMC: 3033120.
DOI: 10.1021/bi101249p.
Influence of acetylator phenotype on the pharmacokinetics of a new vasodilator antihypertensive, endralazine.
Reece P, Cozamanis I, Zacest R
Eur J Clin Pharmacol. 1982; 23(6):523-7.
PMID: 7160421
DOI: 10.1007/BF00637500.
Clinical pharmacokinetics of hydralazine.
Ludden T, McNay Jr J, Shepherd A, Lin M
Clin Pharmacokinet. 1982; 7(3):185-205.
PMID: 7047041
DOI: 10.2165/00003088-198207030-00001.
Altered blood pressure response to propyldazine after repeated oral administration in conscious normotensive dogs: role of the renin-angiotensin system.
Bacher S, KRAUPP O, Beck A, Seitelberger R, Raberger G
Basic Res Cardiol. 1984; 79(5):588-97.
PMID: 6391464
DOI: 10.1007/BF01910488.
Disposition and pharmacokinetics of cadralazine and individual metabolites in man.
Schutz H, Faigle J, Kung W, Theobald W
Eur J Drug Metab Pharmacokinet. 1985; 10(2):147-53.
PMID: 4043143
DOI: 10.1007/BF03189709.
Evaluation of once daily endralazine in hypertension.
Wu R, Spence J, Carruthers S
Eur J Clin Pharmacol. 1986; 30(5):553-7.
PMID: 3758143
DOI: 10.1007/BF00542414.