Begmatov S, Beletsky A, Dedysh S, Mardanov A, Ravin N
Front Microbiol. 2022; 13:951761.
PMID: 35992725
PMC: 9386147.
DOI: 10.3389/fmicb.2022.951761.
Aboulwafa M, Zhang Z, Saier Jr M
Microb Physiol. 2020; 30(1-6):36-49.
PMID: 32998150
PMC: 7717556.
DOI: 10.1159/000510257.
Lloyd C, Park S, Fei J, Vanderpool C
J Bacteriol. 2017; 199(11).
PMID: 28289085
PMC: 5424253.
DOI: 10.1128/JB.00869-16.
Zhang Z, Saier Jr M
Mutat Res. 2016; 793-794:22-31.
PMID: 27810619
PMC: 5136330.
DOI: 10.1016/j.mrfmmm.2016.10.003.
Bowden S, Hopper-Chidlaw A, Rice C, Ramachandran V, Kelly D, Thompson A
PLoS One. 2014; 9(5):e96266.
PMID: 24797930
PMC: 4010460.
DOI: 10.1371/journal.pone.0096266.
Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli.
Sun Y, Vanderpool C
J Bacteriol. 2013; 195(21):4804-15.
PMID: 23873911
PMC: 3807494.
DOI: 10.1128/JB.00722-13.
Genetic engineering of the phosphocarrier protein NPr of the Escherichia coli phosphotransferase system selectively improves sugar uptake activity.
Los Santos Y, Chan H, Cantu V, Rettner R, Sanchez F, Zhang Z
J Biol Chem. 2012; 287(35):29931-9.
PMID: 22767600
PMC: 3436175.
DOI: 10.1074/jbc.M112.345660.
Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response.
Richards G, Vanderpool C
J Bacteriol. 2012; 194(10):2520-30.
PMID: 22427626
PMC: 3347205.
DOI: 10.1128/JB.00009-12.
Molecular call and response: the physiology of bacterial small RNAs.
Richards G, Vanderpool C
Biochim Biophys Acta. 2011; 1809(10):525-31.
PMID: 21843668
PMC: 3186873.
DOI: 10.1016/j.bbagrm.2011.07.013.
The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes.
Rice J, Vanderpool C
Nucleic Acids Res. 2011; 39(9):3806-19.
PMID: 21245045
PMC: 3089445.
DOI: 10.1093/nar/gkq1219.
Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium.
Bowden S, Rowley G, Hinton J, Thompson A
Infect Immun. 2009; 77(7):3117-26.
PMID: 19380470
PMC: 2708584.
DOI: 10.1128/IAI.00093-09.
Purification and characterization of a novel mannitol dehydrogenase from a newly isolated strain of Candida magnoliae.
Lee J, Koo B, Kim S, Hyun H
Appl Environ Microbiol. 2003; 69(8):4438-47.
PMID: 12902227
PMC: 169128.
DOI: 10.1128/AEM.69.8.4438-4447.2003.
Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution.
Saier Jr M
Microbiol Rev. 1994; 58(1):71-93.
PMID: 8177172
PMC: 372954.
DOI: 10.1128/mr.58.1.71-93.1994.
The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems.
Robillard G
Mol Cell Biochem. 1982; 46(1):3-24.
PMID: 7050654
DOI: 10.1007/BF00215577.
Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system.
Saier Jr M, Schmidt M
J Bacteriol. 1981; 145(1):391-7.
PMID: 6780516
PMC: 217284.
DOI: 10.1128/jb.145.1.391-397.1981.
Rapid turnover of mannitol-1-phosphate in Escherichia coli.
Rosenberg H, Pearce S, Hardy C, Jacomb P
J Bacteriol. 1984; 158(1):63-8.
PMID: 6425270
PMC: 215379.
DOI: 10.1128/jb.158.1.63-68.1984.
Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
Thompson J, Chassy B
J Bacteriol. 1982; 151(3):1454-65.
PMID: 6286601
PMC: 220427.
DOI: 10.1128/jb.151.3.1454-1465.1982.
Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria.
Postma P, Lengeler J
Microbiol Rev. 1985; 49(3):232-69.
PMID: 3900671
PMC: 373035.
DOI: 10.1128/mr.49.3.232-269.1985.
Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system.
Williams N, Fox D, Shea C, Roseman S
Proc Natl Acad Sci U S A. 1986; 83(23):8934-8.
PMID: 2947241
PMC: 387048.
DOI: 10.1073/pnas.83.23.8934.