Bouisset N, Laakso I
Exp Brain Res. 2024; 242(11):2493-2507.
PMID: 39261353
DOI: 10.1007/s00221-024-06910-y.
Legros A, Corbacio M, Villard S, Souques M, Lambrozo J
Bioelectromagnetics. 2022; 43(7):399-403.
PMID: 36403265
PMC: 9828214.
DOI: 10.1002/bem.22426.
Bouisset N, Villard S, Legros A
Bioelectromagnetics. 2022; 43(6):355-367.
PMID: 35801487
PMC: 9541167.
DOI: 10.1002/bem.22417.
Evans I, Palmisano S, Croft R
Sci Rep. 2022; 12(1):7775.
PMID: 35545643
PMC: 9095629.
DOI: 10.1038/s41598-022-11755-y.
Molendowska M, Fasano F, Rudrapatna U, Kimmlingen R, Jones D, Kusmia S
Magn Reson Med. 2021; 87(5):2512-2520.
PMID: 34932236
PMC: 7615249.
DOI: 10.1002/mrm.29118.
Physiological effects of low-magnitude electric fields on brain activity: advances from , and models.
Modolo J, Denoyer Y, Wendling F, Benquet P
Curr Opin Biomed Eng. 2019; 8:38-44.
PMID: 31106284
PMC: 6516771.
DOI: 10.1016/j.cobme.2018.09.006.
Impact of extremely low-frequency magnetic fields on human postural control.
Villard S, Allen A, Bouisset N, Corbacio M, Thomas A, Guerraz M
Exp Brain Res. 2018; 237(3):611-623.
PMID: 30519897
DOI: 10.1007/s00221-018-5442-9.
Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure.
Saito A, Takahashi M, Makino K, Suzuki Y, Jimbo Y, Nakasono S
Front Physiol. 2018; 9:189.
PMID: 29662453
PMC: 5890104.
DOI: 10.3389/fphys.2018.00189.
Effects of A 60 Hz Magnetic Field of Up to 50 milliTesla on Human Tremor and EEG: A Pilot Study.
Davarpanah Jazi S, Modolo J, Baker C, Villard S, Legros A
Int J Environ Res Public Health. 2017; 14(12).
PMID: 29186760
PMC: 5750865.
DOI: 10.3390/ijerph14121446.
Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale.
Budinger T, Bird M, Frydman L, Long J, Mareci T, Rooney W
MAGMA. 2016; 29(3):617-39.
PMID: 27194154
PMC: 5538368.
DOI: 10.1007/s10334-016-0561-4.
Effects of a 60 Hz Magnetic Field Exposure Up to 3000 μT on Human Brain Activation as Measured by Functional Magnetic Resonance Imaging.
Legros A, Modolo J, Brown S, Roberston J, Thomas A
PLoS One. 2015; 10(7):e0132024.
PMID: 26214312
PMC: 4516358.
DOI: 10.1371/journal.pone.0132024.
Occupational and environmental health in the aluminum industry: key points for health practitioners.
Wesdock J, Arnold I
J Occup Environ Med. 2014; 56(5 Suppl):S5-11.
PMID: 24806726
PMC: 4131940.
DOI: 10.1097/JOM.0000000000000071.
Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.
Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab J
Neuroimage. 2013; 80:220-33.
PMID: 23707579
PMC: 3725309.
DOI: 10.1016/j.neuroimage.2013.05.078.
Neural mass modeling of power-line magnetic fields effects on brain activity.
Modolo J, Thomas A, Legros A
Front Comput Neurosci. 2013; 7:34.
PMID: 23596412
PMC: 3622877.
DOI: 10.3389/fncom.2013.00034.
Occupational exposure in MRI.
McRobbie D
Br J Radiol. 2012; 85(1012):293-312.
PMID: 22457400
PMC: 3486652.
DOI: 10.1259/bjr/30146162.
Neurophysiological and behavioral effects of a 60 Hz, 1,800 μT magnetic field in humans.
Legros A, Corbacio M, Beuter A, Modolo J, Goulet D, Prato F
Eur J Appl Physiol. 2011; 112(5):1751-62.
PMID: 21894451
DOI: 10.1007/s00421-011-2130-x.
Electrical phosphenes: on the influence of conductivity inhomogeneities and small-scale structures of the orbita on the current density threshold of excitation.
Lindenblatt G, Silny J
Med Biol Eng Comput. 2002; 40(3):354-9.
PMID: 12195984
DOI: 10.1007/BF02344219.
Magneto- and electrophosphenes: a comparative study.
Lovsund P, Oberg P, Nilsson S
Med Biol Eng Comput. 1980; 18(6):758-64.
PMID: 7230923
DOI: 10.1007/BF02441902.
Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity.
Lovsund P, Nilsson S, Oberg P
Med Biol Eng Comput. 1981; 19(6):679-85.
PMID: 6977077
DOI: 10.1007/BF02441328.
Effect of time-varying magnetic fields on the action potential in lobster giant axon.
Ueno S, Lovsund P, Oberg P
Med Biol Eng Comput. 1986; 24(5):521-6.
PMID: 3821211
DOI: 10.1007/BF02443969.