» Articles » PMID: 6817304

Nontranscribed Spacer Sequences Promote in Vitro Transcription of Drosophila Ribosomal DNA

Overview
Specialty Biochemistry
Date 1982 Nov 11
PMID 6817304
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Tandem repeats of ribosomal RNA transcription units in Drosophila melanogaster are separated by a nontranscribed spacer that is comprised in part of serial repeats of a 0.24 kb sequence. DNA sequence analysis shows that such repeats are imperfect copies of a region that includes the site of in vivo rRNA transcription initiation (ca. -240 to +30). Subclones of the rDNA spacer that are copies of the sequence extending from -34 through the initiation site support detectable in vitro transcription in a mixture involving a Drosophila cell-free extract, but accurate in vitro transcription is considerably enhanced when a nontranscribed spacer template includes a copy of the sequence extending upstream of -34. From a comparison of the sequences and transcription template-effectiveness of various rDNA subclones, we infer that a major promoter of RNA polymerase I activity lies between -150 and -30 in the rDNA nontranscribed spacer. The nontranscribed spacer copies of the initiation region are less effective templates for transcription than is the region of in vivo initiation, and there are differences between spacer repeats and the authentic sequence downstream of -240 that may account for this.

Citing Articles

Variation in the ribosomal RNA genes among individuals of Vicia faba.

Rogers S, Honda S, Bendich A Plant Mol Biol. 2013; 6(5):339-45.

PMID: 24307384 DOI: 10.1007/BF00034941.


Structure and variation in ribosomal RNA genes of pea : Characterization of a cloned rDNA repeat and chromosomal rDNA variants.

Jorgensen R, Cuellar R, Thompson W, Kavanagh T Plant Mol Biol. 2013; 8(1):3-12.

PMID: 24302519 DOI: 10.1007/BF00016429.


Dropout alignment allows homology recognition and evolutionary analysis of rDNA intergenic spacers.

Ryu S, Do Y, Fitch D, Kim W, Mishra B J Mol Evol. 2008; 66(4):368-83.

PMID: 18363028 DOI: 10.1007/s00239-008-9090-8.


Light-regulated changes in DNase I hypersensitive sites in the rRNA genes of Pisum sativum.

Kaufman L, Watson J, Thompson W Proc Natl Acad Sci U S A. 1987; 84(6):1550-4.

PMID: 16578799 PMC: 304473. DOI: 10.1073/pnas.84.6.1550.


Widely differing degrees of sequence conservation of the two types of rDNA insertion within the melanogaster species sub-group of Drosophila.

Roiha H, Read C, Browne M, Glover D EMBO J. 1983; 2(5):721-6.

PMID: 16453453 PMC: 555176. DOI: 10.1002/j.1460-2075.1983.tb01491.x.


References
1.
McKnight S, MILLER Jr O . Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell. 1976; 8(2):305-19. DOI: 10.1016/0092-8674(76)90014-3. View

2.
Scheer U, Trendelenburg M, Krohne G, Franke W . Lengths and patterns of transcriptional units in the amplified nucleoli of oocytes of Xenopus laevis. Chromosoma. 1977; 60(2):147-67. DOI: 10.1007/BF00288462. View

3.
Sutcliffe J . pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Res. 1978; 5(8):2721-8. PMC: 342202. DOI: 10.1093/nar/5.8.2721. View

4.
Boseley P, Moss T, Machler M, Portmann R, BIRNSTIEL M . Sequence organization of the spacer DNA in a ribosomal gene unit of Xenopus laevis. Cell. 1979; 17(1):19-31. DOI: 10.1016/0092-8674(79)90291-5. View

5.
Long E, Dawid I . Restriction analysis of spacers in ribosomal DNA of Drosophila melanogaster. Nucleic Acids Res. 1979; 7(1):205-15. PMC: 328006. DOI: 10.1093/nar/7.1.205. View