Chatzidimitriou E, Bisaccia P, Corra F, Bonato M, Irato P, Manuto L
Antioxidants (Basel). 2020; 9(4).
PMID: 32316382
PMC: 7222407.
DOI: 10.3390/antiox9040325.
Harrison A, Bakaletz L, Munson Jr R
Front Cell Infect Microbiol. 2012; 2:40.
PMID: 22919631
PMC: 3417577.
DOI: 10.3389/fcimb.2012.00040.
Sinkar V, White F, Furner I, Abrahamsen M, Pythoud F, Gordon M
Plant Physiol. 1988; 86(2):584-90.
PMID: 16665950
PMC: 1054527.
DOI: 10.1104/pp.86.2.584.
Becana M, Aparicio-Tejo P, Irigoyen J, Sanchez-Diaz M
Plant Physiol. 1986; 82(4):1169-71.
PMID: 16665158
PMC: 1056282.
DOI: 10.1104/pp.82.4.1169.
Salin M, Bridges S
Plant Physiol. 1982; 69(1):161-5.
PMID: 16662151
PMC: 426167.
DOI: 10.1104/pp.69.1.161.
Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases.
Fang F, Degroote M, FOSTER J, Baumler A, Ochsner U, Testerman T
Proc Natl Acad Sci U S A. 1999; 96(13):7502-7.
PMID: 10377444
PMC: 22115.
DOI: 10.1073/pnas.96.13.7502.
Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase.
Bourne Y, Redford S, Steinman H, Lepock J, Tainer J, Getzoff E
Proc Natl Acad Sci U S A. 1996; 93(23):12774-9.
PMID: 8917495
PMC: 23996.
DOI: 10.1073/pnas.93.23.12774.
Biochemical and genetic consequences of gene transfer from endosymbiont to host genome.
Harington A, Thornley A
J Mol Evol. 1982; 18(5):287-92.
PMID: 7120423
DOI: 10.1007/BF01733893.
Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems.
Hastings J
J Mol Evol. 1983; 19(5):309-21.
PMID: 6358519
DOI: 10.1007/BF02101634.
Essentiality of the active-site arginine residue for the normal catalytic activity of Cu,Zn superoxide dismutase.
Borders Jr C, Saunders J, Blech D, Fridovich I
Biochem J. 1985; 230(3):771-6.
PMID: 4062877
PMC: 1152682.
DOI: 10.1042/bj2300771.
Bacteriocuprein superoxide dismutases in pseudomonads.
Steinman H
J Bacteriol. 1985; 162(3):1255-60.
PMID: 3997777
PMC: 215912.
DOI: 10.1128/jb.162.3.1255-1260.1985.
Presence of 2-methylthioribosyl-trans-zeatin in Azotobacter vinelandii tRNA.
Ajitkumar P, Cherayil J
J Bacteriol. 1985; 162(2):752-5.
PMID: 3988713
PMC: 218914.
DOI: 10.1128/jb.162.2.752-755.1985.
Molecular archaeology of the mitochondrial genome.
Obar R, Green J
J Mol Evol. 1985; 22(3):243-51.
PMID: 3935805
DOI: 10.1007/BF02099754.
Superoxide dismutase: an evolutionary puzzle.
Lee Y, Friedman D, Ayala F
Proc Natl Acad Sci U S A. 1985; 82(3):824-8.
PMID: 3919383
PMC: 397139.
DOI: 10.1073/pnas.82.3.824.
The presence of a copper/zinc superoxide dismutase in the bacterium Photobacterium leiognathi: a likely case of gene transfer from eukaryotes to prokaryotes.
Bannister J, Parker M
Proc Natl Acad Sci U S A. 1985; 82(1):149-52.
PMID: 3855538
PMC: 396989.
DOI: 10.1073/pnas.82.1.149.
Strain variation in bacteriocuprein superoxide dismutase from symbiotic Photobacterium leiognathi.
Dunlap P, Steinman H
J Bacteriol. 1986; 165(2):393-8.
PMID: 3511030
PMC: 214430.
DOI: 10.1128/jb.165.2.393-398.1986.
Progressive sequence alignment as a prerequisite to correct phylogenetic trees.
Feng D, Doolittle R
J Mol Evol. 1987; 25(4):351-60.
PMID: 3118049
DOI: 10.1007/BF02603120.
Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen.
Thangaraj H, Lamb F, Davis E, Jenner P, Jeyakumar L, Colston M
Infect Immun. 1990; 58(6):1937-42.
PMID: 1692812
PMC: 258747.
DOI: 10.1128/iai.58.6.1937-1942.1990.