» Articles » PMID: 6769915

Terminal Branching of the Respiratory Electron Transport Chain in Neisseria Meningitidis

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1980 Jun 1
PMID 6769915
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The respiratory components of the envelope membrane preparation of Neisseria meningitidis were investigated. Oxidase activities were demonstrated in this fraction in the presence of succinic acid, reduced nicotinamide adenine dinucleotide, and ascorbate-N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD). Differences in the kinetics of inhibition by terminal oxidase inhibitors on the three oxidase activities indicated that ascorbate-TMPD oxidation involved only an azide-sensitive oxidase, whereas oxidation of the physiological substrates involved two oxidases, one of which was relatively azide resistant. Spectrophotometric studies revealed that ascorbate-TMPD donated its electrons exclusively to cytochrome o, whereas the physiological substrates were oxidized via both cytochromes o and a. The effects of class II inhibitors on the oxidases suggest terminal branching of the electron transport chain at the cytochrome b level. A model of the respiratory system in N. meningitidis is proposed.

Citing Articles

Effect of respiratory inhibitors and quinone analogues on the aerobic electron transport system of Eikenella corrodens.

Jaramillo-Lanchero R, Suarez-Alvarez P, Teheran-Sierra L Sci Rep. 2021; 11(1):8987.

PMID: 33903681 PMC: 8076288. DOI: 10.1038/s41598-021-88388-0.


Organization of the electron transfer chain to oxygen in the obligate human pathogen Neisseria gonorrhoeae: roles for cytochromes c4 and c5, but not cytochrome c2, in oxygen reduction.

Li Y, Hopper A, Overton T, Squire D, Cole J, Tovell N J Bacteriol. 2010; 192(9):2395-406.

PMID: 20154126 PMC: 2863483. DOI: 10.1128/JB.00002-10.


Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes.

E Baart G, Zomer B, de Haan A, van der Pol L, Beuvery E, Tramper J Genome Biol. 2007; 8(7):R136.

PMID: 17617894 PMC: 2323225. DOI: 10.1186/gb-2007-8-7-r136.


L-cysteine oxidase activity in the membrane of Neisseria meningitidis.

Yu E, DeVoe I J Bacteriol. 1981; 145(1):280-7.

PMID: 6780513 PMC: 217270. DOI: 10.1128/jb.145.1.280-287.1981.


The meningococcus and mechanisms of pathogenicity.

DeVoe I Microbiol Rev. 1982; 46(2):162-90.

PMID: 6126800 PMC: 281537. DOI: 10.1128/mr.46.2.162-190.1982.


References
1.
Jones M . Physiological role for the membrane bound ascorbate-TMPD oxidase in pseudomonas putida. Arch Microbiol. 1975; 102(3):275-9. DOI: 10.1007/BF00428378. View

2.
Niven D, Collins P, Knowles C . The respiratory system of Chromobacterium violaceum grown under conditions of high and low cyanide evolution. J Gen Microbiol. 1975; 90(2):271-85. DOI: 10.1099/00221287-90-2-271. View

3.
DeVoe I . Egestion of degraded meningococci by polymorphonuclear leukocytes. J Bacteriol. 1976; 125(1):258-66. PMC: 233359. DOI: 10.1128/jb.125.1.258-266.1976. View

4.
DeVoe I, Golchrist J . Localization of tetramethylphenylenediamine-oxidase in the outer cell wall layer of Neisseria meningitidis. J Bacteriol. 1976; 128(1):144-8. PMC: 232836. DOI: 10.1128/jb.128.1.144-148.1976. View

5.
Kenimer E, Lapp D . Effects of selected inhibitors on electron transport in Neisseria gonorrhoeae. J Bacteriol. 1978; 134(2):537-45. PMC: 222284. DOI: 10.1128/jb.134.2.537-545.1978. View