Farrell K, Fields C, Dicke S, Zanni M
J Phys Chem Lett. 2023; 14(51):11750-11757.
PMID: 38117179
PMC: 11163371.
DOI: 10.1021/acs.jpclett.3c02698.
Mucke N, Wocjan T, Jacquier M, Herrmann H, Portet S
Biophys J. 2022; 121(6):1094-1104.
PMID: 35124070
PMC: 8943748.
DOI: 10.1016/j.bpj.2022.02.001.
Rice L, Ecroyd H, van Oijen A
Comput Struct Biotechnol J. 2021; 19:4711-4724.
PMID: 34504664
PMC: 8405898.
DOI: 10.1016/j.csbj.2021.08.017.
Tournus M, Escobedo M, Xue W, Doumic M
PLoS Comput Biol. 2021; 17(9):e1008964.
PMID: 34478445
PMC: 8462728.
DOI: 10.1371/journal.pcbi.1008964.
Smith J, Jiang X, An H, Barclay A, Licari G, Tajkhorshid E
ACS Appl Nano Mater. 2020; 3(2):937-945.
PMID: 32149271
PMC: 7059651.
DOI: 10.1021/acsanm.9b01331.
The role of annealing and fragmentation in human tau aggregation dynamics.
Huseby C, Bundschuh R, Kuret J
J Biol Chem. 2019; 294(13):4728-4737.
PMID: 30745358
PMC: 6442056.
DOI: 10.1074/jbc.RA118.006943.
Measurement of amyloid formation by turbidity assay-seeing through the cloud.
Zhao R, So M, Maat H, Ray N, Arisaka F, Goto Y
Biophys Rev. 2016; 8(4):445-471.
PMID: 28003859
PMC: 5135725.
DOI: 10.1007/s12551-016-0233-7.
Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study.
Lopez C, Saldanha O, Huber K, Koster S
Proc Natl Acad Sci U S A. 2016; 113(40):11152-11157.
PMID: 27655889
PMC: 5056051.
DOI: 10.1073/pnas.1606372113.
Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics.
Hariadi R, Winfree E, Yurke B
Proc Natl Acad Sci U S A. 2015; 112(45):E6086-95.
PMID: 26504222
PMC: 4653207.
DOI: 10.1073/pnas.1424673112.
A Kinetic Model for Cell Damage Caused by Oligomer Formation.
Hong L, Huang Y, Yong W
Biophys J. 2015; 109(7):1338-46.
PMID: 26445435
PMC: 4601094.
DOI: 10.1016/j.bpj.2015.08.007.
Mechanical heterogeneity favors fragmentation of strained actin filaments.
De La Cruz E, Martiel J, Blanchoin L
Biophys J. 2015; 108(9):2270-81.
PMID: 25954884
PMC: 4423049.
DOI: 10.1016/j.bpj.2015.03.058.
Competition between primary nucleation and autocatalysis in amyloid fibril self-assembly.
Eden K, Morris R, Gillam J, MacPhee C, Allen R
Biophys J. 2015; 108(3):632-43.
PMID: 25650930
PMC: 4317560.
DOI: 10.1016/j.bpj.2014.11.3465.
An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior.
Xue W, Radford S
Biophys J. 2013; 105(12):2811-9.
PMID: 24359753
PMC: 3882454.
DOI: 10.1016/j.bpj.2013.10.034.
Interaction of profilin with the barbed end of actin filaments.
Courtemanche N, Pollard T
Biochemistry. 2013; 52(37):6456-66.
PMID: 23947767
PMC: 3823579.
DOI: 10.1021/bi400682n.
Simple moment-closure model for the self-assembly of breakable amyloid filaments.
Hong L, Yong W
Biophys J. 2013; 104(3):533-40.
PMID: 23442904
PMC: 3566462.
DOI: 10.1016/j.bpj.2012.12.039.
Distributed actin turnover in the lamellipodium and FRAP kinetics.
Smith M, Kiuchi T, Watanabe N, Vavylonis D
Biophys J. 2013; 104(1):247-57.
PMID: 23332077
PMC: 3540247.
DOI: 10.1016/j.bpj.2012.11.3819.
A lattice-gas model for amyloid fibril aggregation.
Hong L, Qi X, Zhang Y
Europhys Lett. 2013; 94.
PMID: 23275684
PMC: 3531972.
DOI: 10.1209/0295-5075/94/68006.
A qualitative model for aggregation and diffusion of β-amyloid in Alzheimer's disease.
Achdou Y, Franchi B, Marcello N, Tesi M
J Math Biol. 2012; 67(6-7):1369-92.
PMID: 23014767
DOI: 10.1007/s00285-012-0591-0.
End-to-end self-assembly of RADA 16-I nanofibrils in aqueous solutions.
Arosio P, Owczarz M, Wu H, Butte A, Morbidelli M
Biophys J. 2012; 102(7):1617-26.
PMID: 22500762
PMC: 3318125.
DOI: 10.1016/j.bpj.2012.03.012.
Dissecting the kinetic process of amyloid fiber formation through asymptotic analysis.
Hong L, Qi X, Zhang Y
J Phys Chem B. 2011; 116(23):6611-7.
PMID: 22126094
PMC: 3314729.
DOI: 10.1021/jp205702u.