» Articles » PMID: 6539173

Microfilament Rearrangements During Fibroblast-induced Contraction of Three-dimensional Hydrated Collagen Gels

Overview
Journal Cell Motil
Specialty Cell Biology
Date 1984 Jan 1
PMID 6539173
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

In vitro models have been developed recently to study the ability of fibroblasts to generate tensile force within collagen gels. The present study was initiated to assess the role of the cytoskeleton in the cell shape changes and force generation in one such model system. Porcine periodontal ligament fibroblasts ( PPLF ) were cultured within three-dimensional collagen gels attached to glass coverslips. Fluorescence microscopy, using nitrobenzooxadizole (NBD)- phallacidin labeling for microfilaments and tubulin antibody staining for microtubules, was combined with phase and Nomarski optics to determine the intra- and extracellular architecture of the cells and collagen fibers. Samples were observed from 30 minutes to 24 hours after initiation of cell attachment. During attachment and spreading, NBD- phallacidin staining changed dramatically until large microfilament bundles became prominent. Collagen fiber alignment, compaction, and finally tearing from the coverslip occurred during this time. After release of tension, microfilament bundles were no longer evident. The change in microtubule distribution during these processes was less dramatic, appearing to follow the change in cell shape. These results indicate that microfilaments play an essential role in generating force to align and compact collagen, while microtubules may have a secondary role only.

Citing Articles

Desert hedgehog-primary cilia cross talk shapes mitral valve tissue by organizing smooth muscle actin.

Fulmer D, Toomer K, Glover J, Guo L, Moore K, Moore R Dev Biol. 2020; 463(1):26-38.

PMID: 32151560 PMC: 7281834. DOI: 10.1016/j.ydbio.2020.03.003.


Three-dimensional ultrastructural and histomorphological analysis of the periodontal ligament with occlusal hypofunction via focused ion beam/scanning electron microscope tomography.

Hirashima S, Ohta K, Kanazawa T, Togo A, Kakuma T, Kusukawa J Sci Rep. 2019; 9(1):9520.

PMID: 31266989 PMC: 6606634. DOI: 10.1038/s41598-019-45963-w.


Three-dimensional ultrastructural analysis of cells in the periodontal ligament using focused ion beam/scanning electron microscope tomography.

Hirashima S, Ohta K, Kanazawa T, Okayama S, Togo A, Uchimura N Sci Rep. 2016; 6:39435.

PMID: 27995978 PMC: 5171660. DOI: 10.1038/srep39435.


Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets.

Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M, Sievers A Planta. 2013; 185(2):153-61.

PMID: 24186337 DOI: 10.1007/BF00194056.


Effects of non-linearity on cell-ECM interactions.

Wen Q, Janmey P Exp Cell Res. 2013; 319(16):2481-9.

PMID: 23748051 PMC: 3930572. DOI: 10.1016/j.yexcr.2013.05.017.