Insulin-induced Rapid Decrease of a Major Protein in Fat Cell Plasma Membranes
Overview
Authors
Affiliations
In order to increase our understanding of the mode of action of insulin in rat fat cells, we investigated the effect of insulin on protein concentrations in purified fat cell fractions using two-dimensional electrophoresis in combination with an ultrasensitive color silver stain technique. Incubation of fat cells with insulin caused a 90% decrease in the plasma membrane concentration of a major plasma membrane protein with a molecular mass of 90 kDa. The insulin effect was dose-dependent with a half-maximal effect at 9.5 microunits/ml, and time-dependent with a t 1/2 of less than 20 s. Insulin-like growth factor I, orthovanadate, and lanthanum mimicked the effect of insulin. Likewise, fractionation of adipocytes in the presence of divalent cation chelating agents caused a similar reduction in the concentration of the 90 kDa protein, and it was possible to overcome the effects of the chelating agents by adding equivalent amounts of calcium. This suggests the involvement of calcium. The 90 kDa protein was also found in low and high density microsomes, but it was not affected in those fractions by either insulin or chelators. It is suggested from the study that the movement of a 90 kDa protein in fat cell plasma membranes probably represents part of the transmission system in the mechanism of insulin action in rat adipocytes.
Wang H, Yang Y, Chen W, Ding L, Li P, Zhao X Proteome Sci. 2013; 11(1):6.
PMID: 23363438 PMC: 3599948. DOI: 10.1186/1477-5956-11-6.
Will T, Steckbauer K, Hardt M, van Bel A PLoS One. 2012; 7(10):e46903.
PMID: 23056521 PMC: 3462764. DOI: 10.1371/journal.pone.0046903.
Molecular sabotage of plant defense by aphid saliva.
Will T, Tjallingii W, Thonnessen A, van Bel A Proc Natl Acad Sci U S A. 2007; 104(25):10536-41.
PMID: 17553961 PMC: 1965548. DOI: 10.1073/pnas.0703535104.
Single molecule mechanical probing of the SNARE protein interactions.
Liu W, Montana V, Bai J, Chapman E, Mohideen U, Parpura V Biophys J. 2006; 91(2):744-58.
PMID: 16648158 PMC: 1483094. DOI: 10.1529/biophysj.105.073312.
A novel TATA-box-binding factor from the silk glands of the mulberry silkworm, Bombyx mori.
Srinivasan L, Gopinathan K Biochem J. 2002; 363(Pt 3):503-13.
PMID: 11964150 PMC: 1222502. DOI: 10.1042/0264-6021:3630503.