Alleman A, Peters J
Appl Environ Microbiol. 2023; 89(5):e0037823.
PMID: 37154716
PMC: 10231201.
DOI: 10.1128/aem.00378-23.
Burger Y, Schwarz F, Muller V
Biotechnol Biofuels Bioprod. 2022; 15(1):48.
PMID: 35545791
PMC: 9097184.
DOI: 10.1186/s13068-022-02147-5.
Yang J, Lee S, Ryu J, Lee H, Kang S
Front Microbiol. 2022; 13:844735.
PMID: 35369452
PMC: 8965080.
DOI: 10.3389/fmicb.2022.844735.
Yi J, Huang H, Liang J, Wang R, Liu Z, Li F
Microbiol Spectr. 2021; 9(2):e0095821.
PMID: 34643446
PMC: 8515935.
DOI: 10.1128/Spectrum.00958-21.
Leo F, Schwarz F, Schuchmann K, Muller V
Appl Microbiol Biotechnol. 2021; 105(14-15):5861-5872.
PMID: 34331557
PMC: 8390402.
DOI: 10.1007/s00253-021-11463-z.
Metabolic and proteomic analyses of product selectivity and redox regulation in Clostridium pasteurianum grown on glycerol under varied iron availability.
Groeger C, Wang W, Sabra W, Utesch T, Zeng A
Microb Cell Fact. 2017; 16(1):64.
PMID: 28424096
PMC: 5395762.
DOI: 10.1186/s12934-017-0678-9.
Molybdenum and tungsten-dependent formate dehydrogenases.
Maia L, Moura J, Moura I
J Biol Inorg Chem. 2014; 20(2):287-309.
PMID: 25476858
DOI: 10.1007/s00775-014-1218-2.
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica.
Mock J, Wang S, Huang H, Kahnt J, Thauer R
J Bacteriol. 2014; 196(18):3303-14.
PMID: 25002540
PMC: 4135698.
DOI: 10.1128/JB.01839-14.
Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry.
Scherer P, Lippert H, Wolff G
Biol Trace Elem Res. 2013; 5(3):149-63.
PMID: 24263482
DOI: 10.1007/BF02916619.
Formate production through biocatalysis.
Alissandratos A, Kim H, Easton C
Bioengineered. 2013; 4(5):348-50.
PMID: 23841981
PMC: 3813536.
DOI: 10.4161/bioe.25360.
In vivo activation of methyl-coenzyme M reductase by carbon monoxide.
Zhou Y, Dorchak A, Ragsdale S
Front Microbiol. 2013; 4:69.
PMID: 23554601
PMC: 3612591.
DOI: 10.3389/fmicb.2013.00069.
Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO(2) to formate.
Alissandratos A, Kim H, Matthews H, Hennessy J, Philbrook A, Easton C
Appl Environ Microbiol. 2012; 79(2):741-4.
PMID: 23144135
PMC: 3553769.
DOI: 10.1128/AEM.02886-12.
Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site.
Imkamp F, Biegel E, Jayamani E, Buckel W, Muller V
J Bacteriol. 2007; 189(22):8145-53.
PMID: 17873051
PMC: 2168664.
DOI: 10.1128/JB.01017-07.
Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase.
Rubio L, Flores E, Herrero A
Photosynth Res. 2005; 72(1):13-26.
PMID: 16228531
DOI: 10.1023/A:1016078700839.
Properties of formate dehydrogenase in Methanobacterium formicicum.
Schauer N, Ferry J
J Bacteriol. 1982; 150(1):1-7.
PMID: 7061389
PMC: 220075.
DOI: 10.1128/jb.150.1.1-7.1982.
Formate dehydrogenase of Clostridium pasteurianum.
Liu C, Mortenson L
J Bacteriol. 1984; 159(1):375-80.
PMID: 6547435
PMC: 215640.
DOI: 10.1128/jb.159.1.375-380.1984.
Identification of molybdoproteins in Clostridium pasteurianum.
Hinton S, Mortenson L
J Bacteriol. 1985; 162(2):477-84.
PMID: 3857223
PMC: 218873.
DOI: 10.1128/jb.162.2.477-484.1985.
Inactivation of clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase by sodium nitrite.
Carpenter C, Reddy D, Cornforth D
Appl Environ Microbiol. 1987; 53(3):549-52.
PMID: 3555332
PMC: 203704.
DOI: 10.1128/aem.53.3.549-552.1987.
Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum.
Wagner R, Andreesen J
Arch Microbiol. 1979; 121(3):255-60.
PMID: 518233
DOI: 10.1007/BF00425064.
Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation.
Schonheit P, Brandis A, Thauer R
Arch Microbiol. 1979; 120(1):73-6.
PMID: 426601
DOI: 10.1007/BF00413277.