» Articles » PMID: 6359063

Sequence Analysis of 28S Ribosomal DNA from the Amphibian Xenopus Laevis

Overview
Specialty Biochemistry
Date 1983 Nov 25
PMID 6359063
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.

Citing Articles

Ribosome Structural Changes Dynamically Affect Ribosome Function.

Lindahl L Int J Mol Sci. 2024; 25(20).

PMID: 39456968 PMC: 11508205. DOI: 10.3390/ijms252011186.


rRNA expansion segment 7 in eukaryotes: from Signature Fold to tentacles.

Biesiada M, Hu M, Williams L, Purzycka K, Petrov A Nucleic Acids Res. 2022; 50(18):10717-10732.

PMID: 36200812 PMC: 9561286. DOI: 10.1093/nar/gkac844.


Anatomy of noncovalent interactions between the nucleobases or ribose and π-containing amino acids in RNA-protein complexes.

Wilson K, Kung R, Dsouza S, Wetmore S Nucleic Acids Res. 2021; 49(4):2213-2225.

PMID: 33544852 PMC: 7913691. DOI: 10.1093/nar/gkab008.


Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids.

Vicens Q, Bochler A, Jobe A, Frank J, Hashem Y Subcell Biochem. 2020; 96:433-450.

PMID: 33252739 DOI: 10.1007/978-3-030-58971-4_13.


Supersized Ribosomal RNA Expansion Segments in Asgard Archaea.

Penev P, Fakhretaha-Aval S, Patel V, Cannone J, Gutell R, Petrov A Genome Biol Evol. 2020; 12(10):1694-1710.

PMID: 32785681 PMC: 7594248. DOI: 10.1093/gbe/evaa170.


References
1.
Sege R, Soll D, Ruddle F, Queen C . A conversational system for the computer analysis of nucleic acid sequences. Nucleic Acids Res. 1981; 9(2):437-44. PMC: 326703. DOI: 10.1093/nar/9.2.437. View

2.
Gourse R, Gerbi S . Fine structure of ribosomal RNA. IV. Extraordinary evolutionary conservation in sequences that flank introns in rDNA. Nucleic Acids Res. 1980; 8(16):3623-37. PMC: 324180. DOI: 10.1093/nar/8.16.3623. View

3.
Muller F, Clarkson S . Nucleotide sequence of genes coding for tRNAPhe and tRNATyr from a repeating unit of X. laevis DNA. Cell. 1980; 19(2):345-53. DOI: 10.1016/0092-8674(80)90509-7. View

4.
Georgiev O, Nikolaev N, HADJIOLOV A, Skryabin K, Zakharyev V, Bayev A . The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25 S rRNA gene from Saccharomyces cerevisae. Nucleic Acids Res. 1981; 9(24):6953-8. PMC: 327653. DOI: 10.1093/nar/9.24.6953. View

5.
Nazar R, Sitz T . Role of the 5'-terminal sequence in the RNA binding site of yeast 5.8 S rRNA. FEBS Lett. 1980; 115(1):71-6. DOI: 10.1016/0014-5793(80)80729-0. View