» Articles » PMID: 6330280

Cyclic AMP Modulation of Ion Transport Across Frog Retinal Pigment Epithelium. Measurements in the Short-circuit State

Overview
Journal J Gen Physiol
Specialty Physiology
Date 1984 Jun 1
PMID 6330280
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

In the frog retinal pigment epithelium (RPE), the cellular levels of cyclic AMP (cAMP) were measured in control conditions and after treatment with substances that are known to inhibit phosphodiesterase (PDE) activity (isobutyl-1-methylxanthine, SQ65442) or stimulate adenylate cyclase activity (forskolin). The cAMP levels were elevated by a factor of 5-7 compared with the controls in PDE-treated tissues and by a factor of 18 in forskolin-treated tissues. The exogenous application of cAMP (1 mM), PDE inhibitors (0.5 mM), or forskolin (0.1 mM) all produced similar changes in epithelial electrical parameters, such as transepithelial potential (TEP) and resistance (Rt), as well as changes in active ion transport. Adding 1 mM cAMP to the solution bathing the apical membrane transiently increased the short-circuit current (SCC) and the TEP (apical side positive) and decreased Rt. Microelectrode experiments showed that the elevation in TEP is due mainly to a depolarization of the basal membrane followed by, and perhaps also accompanied by, a smaller hyperpolarization of the apical membrane. The ratio of the apical to the basolateral membrane resistance increased in the presence of cAMP, and this increase, coupled with the decrease in Rt and the basolateral membrane depolarization, is consistent with a conductance increase at the basolateral membrane. Radioactive tracer experiments showed that cAMP increased the active secretion of Na (choroid to retina) and the active absorption of K (retina to choroid). Cyclic AMP also abolished the active absorption of Cl across the RPE. In sum, elevated cellular levels of cAMP affect active and passive transport mechanisms at the apical and basolateral membranes of the bullfrog RPE.

Citing Articles

Clinical research of fenofibrate and spironolactone for acute central serous chorioretinopathy.

Chai Y, Liu R, Yi J, Ye L, Zou J, Jiang N Int J Ophthalmol. 2016; 9(10):1444-1450.

PMID: 27803862 PMC: 5075660. DOI: 10.18240/ijo.2016.10.13.


Human Adult Retinal Pigment Epithelial Stem Cell-Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue.

Blenkinsop T, Saini J, Maminishkis A, Bharti K, Wan Q, Banzon T Invest Ophthalmol Vis Sci. 2015; 56(12):7085-99.

PMID: 26540654 PMC: 4640474. DOI: 10.1167/iovs.14-16246.


Bestrophins and retinopathies.

Xiao Q, Hartzell H, Yu K Pflugers Arch. 2010; 460(2):559-69.

PMID: 20349192 PMC: 2893225. DOI: 10.1007/s00424-010-0821-5.


Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3'5' guanosine monophosphate accumulation in retinal pigment epithelium cells.

Diederen R, La Heij E, Markerink-van Ittersum M, Kijlstra A, Hendrikse F, de Vente J Br J Ophthalmol. 2006; 91(3):379-84.

PMID: 16943225 PMC: 1857670. DOI: 10.1136/bjo.2006.100628.


Chloride currents in acutely isolated Xenopus retinal pigment epithelial cells.

Hartzell H, Qu Z J Physiol. 2003; 549(Pt 2):453-69.

PMID: 12665603 PMC: 2342951. DOI: 10.1113/jphysiol.2003.040428.


References
1.
Ostwald T, STEINBERG R . Localization of frog retinal pigment epithelium Na+-K+ ATPase. Exp Eye Res. 1980; 31(3):351-60. DOI: 10.1016/s0014-4835(80)80043-1. View

2.
STEINBERG R, Oakley 2nd B, Niemeyer G . Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980; 44(5):897-921. DOI: 10.1152/jn.1980.44.5.897. View

3.
Farber D, Souza D, Chase D, Lolley R . Cyclic nucleotides of cone-dominant retinas. Reduction of cyclic AMP levels by light and by cone degeneration. Invest Ophthalmol Vis Sci. 1981; 20(1):24-31. View

4.
Creese I, Sibley D, LEFF S, Hamblin M . Dopamine receptors: subtypes, localization and regulation. Fed Proc. 1981; 40(2):147-52. View

5.
Capovilla M, Cervetto L, Torre V . Effects of changing external potassium and chloride concentrations on the photoresponses of Bufo bufo rods. J Physiol. 1980; 307:529-51. PMC: 1283062. DOI: 10.1113/jphysiol.1980.sp013452. View