Xie F, Zhang X, Chen J, Xu X, Li S, Xia T
iScience. 2025; 27(12):111508.
PMID: 39758996
PMC: 11697705.
DOI: 10.1016/j.isci.2024.111508.
Radukic M, Le D, Krassuski T, Borchert P, Leach D, Muller K
Nucleic Acids Res. 2024; 53(2.
PMID: 39657764
PMC: 11754738.
DOI: 10.1093/nar/gkae1170.
Junier I, Ghobadpour E, Espeli O, Everaers R
Front Microbiol. 2023; 14:1192831.
PMID: 37965550
PMC: 10642903.
DOI: 10.3389/fmicb.2023.1192831.
Mengoli V, Ceppi I, Sanchez A, Cannavo E, Halder S, Scaglione S
EMBO J. 2022; 42(3):e111998.
PMID: 36541070
PMC: 9890227.
DOI: 10.15252/embj.2022111998.
Starr C, Bryant Z, Spakowitz A
Biophys J. 2022; 121(10):1949-1962.
PMID: 35421389
PMC: 9199097.
DOI: 10.1016/j.bpj.2022.04.009.
Non-equilibrium structural dynamics of supercoiled DNA plasmids exhibits asymmetrical relaxation.
Shaheen C, Hastie C, Metera K, Scott S, Zhang Z, Chen S
Nucleic Acids Res. 2022; 50(5):2754-2764.
PMID: 35188541
PMC: 8934633.
DOI: 10.1093/nar/gkac101.
Impact of Chromosomal Architecture on the Function and Evolution of Bacterial Genomes.
Krogh T, Moller-Jensen J, Kaleta C
Front Microbiol. 2018; 9:2019.
PMID: 30210483
PMC: 6119826.
DOI: 10.3389/fmicb.2018.02019.
DNA supercoiling during transcription.
Ma J, Wang M
Biophys Rev. 2017; 8(Suppl 1):75-87.
PMID: 28275417
PMC: 5338639.
DOI: 10.1007/s12551-016-0215-9.
A novel mode of nuclease action is revealed by the bacterial Mre11/Rad50 complex.
Lim C, Lai P, Leach D, Maki H, Furukohri A
Nucleic Acids Res. 2015; 43(20):9804-16.
PMID: 26319016
PMC: 4787754.
DOI: 10.1093/nar/gkv855.
Supercoiling in DNA and chromatin.
Gilbert N, Allan J
Curr Opin Genet Dev. 2014; 25:15-21.
PMID: 24584092
PMC: 4042020.
DOI: 10.1016/j.gde.2013.10.013.
Competitive superhelical transitions involving cruciform extrusion.
Zhabinskaya D, Benham C
Nucleic Acids Res. 2013; 41(21):9610-21.
PMID: 23969416
PMC: 3834812.
DOI: 10.1093/nar/gkt733.
Theoretical analysis of competing conformational transitions in superhelical DNA.
Zhabinskaya D, Benham C
PLoS Comput Biol. 2012; 8(4):e1002484.
PMID: 22570598
PMC: 3343103.
DOI: 10.1371/journal.pcbi.1002484.
Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases.
Sharma S
J Nucleic Acids. 2011; 2011:724215.
PMID: 21977309
PMC: 3185257.
DOI: 10.4061/2011/724215.
Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation.
Ramreddy T, Sachidanandam R, Strick T
Nucleic Acids Res. 2011; 39(10):4275-83.
PMID: 21266478
PMC: 3105387.
DOI: 10.1093/nar/gkr008.
New approaches to the analysis of palindromic sequences from the human genome: evolution and polymorphism of an intronic site at the NF1 locus.
Lewis S, Chen S, Strathern J, Rattray A
Nucleic Acids Res. 2005; 33(22):e186.
PMID: 16340004
PMC: 1310899.
DOI: 10.1093/nar/gni189.
Transposition of ISHp608, member of an unusual family of bacterial insertion sequences.
Ton-Hoang B, Guynet C, Ronning D, Cointin-Marty B, Dyda F, Chandler M
EMBO J. 2005; 24(18):3325-38.
PMID: 16163392
PMC: 1224677.
DOI: 10.1038/sj.emboj.7600787.
DNA replication origin plasticity and perturbed fork progression in human inverted repeats.
Lebofsky R, Bensimon A
Mol Cell Biol. 2005; 25(15):6789-97.
PMID: 16024811
PMC: 1190330.
DOI: 10.1128/MCB.25.15.6789-6797.2005.
Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations.
Kurahashi H, Inagaki H, Yamada K, Ohye T, Taniguchi M, Emanuel B
J Biol Chem. 2004; 279(34):35377-83.
PMID: 15208332
PMC: 2810964.
DOI: 10.1074/jbc.M400354200.
The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats.
Barbouti A, Stankiewicz P, Nusbaum C, Cuomo C, Cook A, Hoglund M
Am J Hum Genet. 2003; 74(1):1-10.
PMID: 14666446
PMC: 1181896.
DOI: 10.1086/380648.
Rapid, stabilizing palindrome rearrangements in somatic cells by the center-break mechanism.
Cunningham L, Cote A, Cam-Ozdemir C, Lewis S
Mol Cell Biol. 2003; 23(23):8740-50.
PMID: 14612414
PMC: 262683.
DOI: 10.1128/MCB.23.23.8740-8750.2003.