Ohshima H, Matsuoka S, Asai K, Sadaie Y
J Bacteriol. 2001; 184(2):381-9.
PMID: 11751814
PMC: 139560.
DOI: 10.1128/JB.184.2.381-389.2002.
Riles L, Dutchik J, Baktha A, McCauley B, Thayer E, Leckie M
Genetics. 1993; 134(1):81-150.
PMID: 8514151
PMC: 1205446.
DOI: 10.1093/genetics/134.1.81.
Nelson M, Raschke E, McClelland M
Nucleic Acids Res. 1993; 21(13):3139-54.
PMID: 8392715
PMC: 309743.
DOI: 10.1093/nar/21.13.3139.
Roberts M, Cohan F
Genetics. 1993; 134(2):401-8.
PMID: 8325477
PMC: 1205484.
DOI: 10.1093/genetics/134.2.401.
McClelland M, Nelson M, Raschke E
Nucleic Acids Res. 1994; 22(17):3640-59.
PMID: 7937074
PMC: 308336.
DOI: 10.1093/nar/22.17.3640.
The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust.
Zawadzki P, Roberts M, Cohan F
Genetics. 1995; 140(3):917-32.
PMID: 7672591
PMC: 1206676.
DOI: 10.1093/genetics/140.3.917.
Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP beta, phi 3T, and rho 11.
Noyer-Weidner M, Jentsch S, Pawlek B, Gunthert U, Trautner T
J Virol. 1983; 46(2):446-53.
PMID: 6302313
PMC: 255146.
DOI: 10.1128/JVI.46.2.446-453.1983.
Chromosomal loci of genes controlling site-specific restriction endonucleases of Bacillus subtilis.
Ikawa S, Shibata T, Matsumoto K, Iijima T, Saito H, Ando T
Mol Gen Genet. 1981; 183(1):1-6.
PMID: 6276670
DOI: 10.1007/BF00270129.
Bacillus subtilis-phage phi 1 overcomes host-controlled restriction by producing BamNx inhibitor protein.
Makino O, Saito H, Ando T
Mol Gen Genet. 1980; 179(3):463-8.
PMID: 6255284
DOI: 10.1007/BF00271735.
Restriction and modification in Bacillus subtilis: sequence specificities of restriction/modification systems BsuM, BsuE, and BsuF.
Jentsch S
J Bacteriol. 1983; 156(2):800-8.
PMID: 6195145
PMC: 217898.
DOI: 10.1128/jb.156.2.800-808.1983.
An ethA mutation in Bacillus subtilis 168 permits induction of sporulation by ethionine and increases DNA modification of bacteriophage phi 105.
Allen E, Orrego C, Wabiko H, Freese E
J Bacteriol. 1986; 166(1):1-8.
PMID: 3082850
PMC: 214547.
DOI: 10.1128/jb.166.1.1-8.1986.
Determination of DNA sequences containing methylcytosine in Bacillus subtilis Marburg.
Guha S
J Bacteriol. 1985; 163(2):573-9.
PMID: 2991196
PMC: 219160.
DOI: 10.1128/jb.163.2.573-579.1985.
Restriction and modification enzymes and their recognition sequences.
Roberts R
Nucleic Acids Res. 1985; 13 Suppl:r165-200.
PMID: 2987885
PMC: 320508.
DOI: 10.1093/nar/13.suppl.r165.
Restriction enzymes and their isoschizomers.
Roberts R
Nucleic Acids Res. 1988; 16 Suppl:r271-313.
PMID: 2835753
PMC: 340913.
DOI: 10.1093/nar/16.suppl.r271.
Restriction and modification in Bacillus subtilis Marburg 168: target sites and effects on plasmid transformation.
Bron S, Janniere L, Ehrlich S
Mol Gen Genet. 1988; 211(1):186-9.
PMID: 2830465
DOI: 10.1007/BF00338412.
Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases.
Nelson M, McClelland M
Nucleic Acids Res. 1989; 17 Suppl:r389-415.
PMID: 2541418
PMC: 334788.
DOI: 10.1093/nar/17.suppl.r389.
Restriction enzymes and their isoschizomers.
Roberts R
Nucleic Acids Res. 1989; 17 Suppl:r347-87.
PMID: 2541417
PMC: 334787.
DOI: 10.1093/nar/17.suppl.r347.
Restriction enzymes and their isoschizomers.
Roberts R
Nucleic Acids Res. 1990; 18 Suppl:2331-65.
PMID: 2159140
PMC: 331877.
DOI: 10.1093/nar/18.suppl.2331.
The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases.
Walter J, Noyer-Weidner M, Trautner T
EMBO J. 1990; 9(4):1007-13.
PMID: 2108858
PMC: 551770.
DOI: 10.1002/j.1460-2075.1990.tb08203.x.
Purification of BsuE methyltransferase and its application in genome mapping.
Shukla H, Kobayashi Y, Arenstorf H, Yasukochi Y, Weissman S
Nucleic Acids Res. 1991; 19(15):4233-9.
PMID: 1870977
PMC: 328567.
DOI: 10.1093/nar/19.15.4233.