Wade A
Biochem J. 1980; 186(1):161-8.
PMID: 7370005
PMC: 1161515.
DOI: 10.1042/bj1860161.
Postle A, Bloxham D
Biochem J. 1980; 192(1):65-73.
PMID: 7305913
PMC: 1162308.
DOI: 10.1042/bj1920065.
Muller M, Seitz H
Pflugers Arch. 1980; 386(1):47-52.
PMID: 7001343
DOI: 10.1007/BF00584186.
Chang A, Gilchrist B, Wyse B
Diabetologia. 1983; 25(6):514-20.
PMID: 6662280
DOI: 10.1007/BF00284462.
Freyse E, Fischer U, Albrecht G
Diabetologia. 1983; 25(5):411-7.
PMID: 6360779
DOI: 10.1007/BF00282520.
Enzyme regulation and metabolic control.
Manchester K
Proc R Soc Med. 1968; 61(8):812-4.
PMID: 5673412
PMC: 1902408.
[Kinetic studies of glucose metabolism. I. Glucose pool, glucose turnover and Cori cycle in normal volunteers].
Brech W, Glennon J, Gordon E
Klin Wochenschr. 1970; 48(9):521-9.
PMID: 5474669
DOI: 10.1007/BF01488566.
Effects of thyroid disease on glucose oxidative metabolism in man. A compartmental model analysis.
Shames D, Berman M, Segal S
J Clin Invest. 1971; 50(3):627-41.
PMID: 5101784
PMC: 291971.
DOI: 10.1172/JCI106533.
Glucose metabolism in the developing rat. Studies in vivo.
Vernon R, Walker D
Biochem J. 1972; 127(3):521-9.
PMID: 5076193
PMC: 1178693.
DOI: 10.1042/bj1270521.
Evaluation of three isotope-dilution techniques for studying the kinetics of glucose metabolism in sheep.
White R, Steel J, Leng R, LUICK J
Biochem J. 1969; 114(2):203-14.
PMID: 4898281
PMC: 1184845.
DOI: 10.1042/bj1140203.
Effect of elevated lactataemia on the rates of lactate turnover and oxidation in rats.
Freminet A, Bursaux E, Poyart C
Pflugers Arch. 1974; 346(1):75-86.
PMID: 4855896
DOI: 10.1007/BF00592652.
Glucose metabolism in the newborn rat. Temporal studies in vivo.
Snell K, Walker D
Biochem J. 1973; 132(4):739-52.
PMID: 4721609
PMC: 1177649.
DOI: 10.1042/bj1320739.
Determination of synthesis, recycling and body mass of glucose in rats and rabbits in vivo 3H-and 14C-labelled glucose.
Katz J, Dunn A, Chenoweth M, Golden S
Biochem J. 1974; 142(1):171-83.
PMID: 4441370
PMC: 1168223.
DOI: 10.1042/bj1420171.
Biochemical screening test with 14 C-glucose and 32 P-phosphate for the evaluation of embryotoxic effects in vivo.
Krowke R, Siebert G, Neubert D
Naunyn Schmiedebergs Arch Pharmakol. 1971; 271(3):274-88.
PMID: 4257115
DOI: 10.1007/BF00997221.
The metabolic clearance of glucose: measurement and meaning.
Radziuk J, Lickley H
Diabetologia. 1985; 28(6):315-22.
PMID: 3899817
DOI: 10.1007/BF00283136.
Increased glucose turnover and glucose cycling in acromegalic patients with normal glucose tolerance.
KARLANDER S, Vranic M, Efendic S
Diabetologia. 1986; 29(11):778-83.
PMID: 3817335
DOI: 10.1007/BF00873216.
Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation.
Hellerstein M, Greenblatt D, MUNRO H
Proc Natl Acad Sci U S A. 1986; 83(18):7044-8.
PMID: 3462741
PMC: 386649.
DOI: 10.1073/pnas.83.18.7044.
Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state.
Huang M, Veech R
J Clin Invest. 1988; 81(3):872-8.
PMID: 3343346
PMC: 442539.
DOI: 10.1172/JCI113397.
Increased glucose carbon recycling in severely insulin deficient type 1 (insulin-dependent) diabetic subjects.
Benn J, Rai R, Sonksen P
Diabetologia. 1990; 33(3):158-62.
PMID: 2184067
DOI: 10.1007/BF00404043.
Lactate-glucose interrelations, glucose recycling and the Cori cycle in normal fed rats.
Freminet A, Poyart C
Pflugers Arch. 1975; 361(1):25-31.
PMID: 1239739
DOI: 10.1007/BF00587336.