Webster D, Dikshit K, Pagilla K, Stark B
Microorganisms. 2021; 9(8).
PMID: 34442716
PMC: 8398370.
DOI: 10.3390/microorganisms9081637.
Yu F, Zhao X, Wang Z, Liu L, Yi L, Zhou J
Microorganisms. 2021; 9(7).
PMID: 34361891
PMC: 8306070.
DOI: 10.3390/microorganisms9071455.
Veseli I, Dos Santos A, Juarez O, Stark B, Pombert J
Microbiol Resour Announc. 2018; 7(5).
PMID: 30533886
PMC: 6256453.
DOI: 10.1128/MRA.00922-18.
Liu M, Li S, Xie Y, Jia S, Hou Y, Zou Y
Appl Microbiol Biotechnol. 2017; 102(3):1155-1165.
PMID: 29199354
DOI: 10.1007/s00253-017-8680-z.
Breton A, Novikov A, Martin R, Tissieres P, Caroff M
J Lipid Res. 2017; 58(3):543-552.
PMID: 28122817
PMC: 5335584.
DOI: 10.1194/jlr.M072900.
Recombinant Escherichia coli strains with inducible Campylobacter jejuni single domain hemoglobin CHb expression exhibited improved cell growth in bioreactor culture.
Xu L, Xiong W, Yang J, Li J, Tao X
PLoS One. 2015; 10(3):e0116503.
PMID: 25748170
PMC: 4352031.
DOI: 10.1371/journal.pone.0116503.
The Biochemistry of Vitreoscilla hemoglobin.
Stark B, Dikshit K, Pagilla K
Comput Struct Biotechnol J. 2014; 3:e201210002.
PMID: 24688662
PMC: 3962134.
DOI: 10.5936/csbj.201210002.
Chimeric antibody-binding Vitreoscilla hemoglobin (VHb) mediates redox-catalysis reaction: new insight into the functional role of VHb.
Suwanwong Y, Kvist M, Isarankura-Na-Ayudhya C, Tansila N, Bulow L, Prachayasittikul V
Int J Biol Sci. 2006; 2(4):208-15.
PMID: 16967102
PMC: 1560407.
DOI: 10.7150/ijbs.2.208.
Physiological studies on Vitreoscilla stercoraria.
Mayfield D, KESTER A
J Bacteriol. 1972; 112(3):1052-6.
PMID: 4565526
PMC: 251530.
DOI: 10.1128/jb.112.3.1052-1056.1972.
Metabolism of Spirochaeta aurantia. II. Aerobic oxidation oxidation of carbohydrates.
Breznak J, Canale-Parola E
Arch Mikrobiol. 1972; 83(4):278-92.
PMID: 4340023
DOI: 10.1007/BF00425240.
Respiratory mechanisms in the Flexibacteriaceae: terminal oxidase systems of Saprospira grandis and Vitreoscilla species.
Dietrich Jr W, Biggins J
J Bacteriol. 1971; 105(3):1083-9.
PMID: 4323292
PMC: 248539.
DOI: 10.1128/jb.105.3.1083-1089.1971.
Cytochrome content of two pseudomonads containing mixed-function oxidase systems.
Peterson J
J Bacteriol. 1970; 103(3):714-21.
PMID: 4319837
PMC: 248149.
DOI: 10.1128/jb.103.3.714-721.1970.
Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus.
Frerman F, White D
J Bacteriol. 1967; 94(6):1868-74.
PMID: 4294593
PMC: 276915.
DOI: 10.1128/jb.94.6.1868-1874.1967.
Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products.
Heitkamp M, Freeman J, Miller D, Cerniglia C
Appl Environ Microbiol. 1988; 54(10):2556-65.
PMID: 3202634
PMC: 204314.
DOI: 10.1128/aem.54.10.2556-2565.1988.
Changes in cytochrome content and electron transport patterns in Pseudomonas putida as a function of growth phase.
Sweet W, Peterson J
J Bacteriol. 1978; 133(1):217-24.
PMID: 618838
PMC: 221997.
DOI: 10.1128/jb.133.1.217-224.1978.
An inducible n-alkane hydroxylase system containing cytochrome "O" from Candida lipolytica.
BARONCELLI V, Boccalon G, Giannini I, Renzi P
Mol Cell Biochem. 1979; 28(1-3):3-6.
PMID: 530268
DOI: 10.1007/BF00223354.
The oxidation-reduction potentials of cytochrome o + c4 and cytochrome o purified from Azotobacter vinelandii.
Yang T, OKeefe D, Chance B
Biochem J. 1979; 181(3):763-6.
PMID: 518554
PMC: 1161217.
DOI: 10.1042/bj1810763.