Hinks A, Jacob K, Patterson M, Dalton B, Power G
J Sport Health Sci. 2024; 14:101000.
PMID: 39454825
PMC: 11863329.
DOI: 10.1016/j.jshs.2024.101000.
Klotz T, Bleiler C, Rohrle O
Front Physiol. 2021; 12:685531.
PMID: 34408657
PMC: 8365610.
DOI: 10.3389/fphys.2021.685531.
Zhang Y, Chen J, He Q, He X, Basava R, Hodgson J
Int J Numer Method Biomed Eng. 2019; 36(1):e3295.
PMID: 31820588
PMC: 8080883.
DOI: 10.1002/cnm.3295.
Garg K, Corona B, Walters T
Front Pharmacol. 2015; 6:87.
PMID: 25954202
PMC: 4404830.
DOI: 10.3389/fphar.2015.00087.
Corona B, Ward C, Baker H, Walters T, Christ G
Tissue Eng Part A. 2013; 20(3-4):705-15.
PMID: 24066899
PMC: 4518882.
DOI: 10.1089/ten.TEA.2012.0761.
Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.
Zhang C, Gao Y
J Biomech. 2012; 45(11):2001-6.
PMID: 22682257
PMC: 3843153.
DOI: 10.1016/j.jbiomech.2012.04.026.
Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice.
Rouviere C, Corona B, Ingalls C
Muscle Nerve. 2012; 45(4):586-96.
PMID: 22431093
PMC: 3313070.
DOI: 10.1002/mus.22343.
Progressive resistance voluntary wheel running in the mdx mouse.
Call J, McKeehen J, Novotny S, Lowe D
Muscle Nerve. 2010; 42(6):871-80.
PMID: 21104862
PMC: 3392646.
DOI: 10.1002/mus.21764.
Muscle fiber conduction velocity is more affected after eccentric than concentric exercise.
Piitulainen H, Botter A, Merletti R, Avela J
Eur J Appl Physiol. 2010; 111(2):261-73.
PMID: 20865423
DOI: 10.1007/s00421-010-1652-y.
Effects of firing frequency on length-dependent myofascial force transmission between antagonistic and synergistic muscle groups.
Meijer H, Rijkelijkhuizen J, Huijing P
Eur J Appl Physiol. 2008; 104(3):501-13.
PMID: 18584201
DOI: 10.1007/s00421-008-0788-5.
Controlled intermittent shortening contractions of a muscle-tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL.
Maas H, Lehti T, Tiihonen V, Komulainen J, Huijing P
J Muscle Res Cell Motil. 2005; 26(4-5):259-73.
PMID: 16322914
DOI: 10.1007/s10974-005-9043-4.
Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury.
Lovering R, De Deyne P
Am J Physiol Cell Physiol. 2003; 286(2):C230-8.
PMID: 14522817
PMC: 4489567.
DOI: 10.1152/ajpcell.00199.2003.
Divalent cation-dependent adhesion at the myotendinous junction: ultrastructure and mechanics of failure.
Law D, Lightner V
J Muscle Res Cell Motil. 1993; 14(2):173-85.
PMID: 8315021
DOI: 10.1007/BF00115452.
Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle.
Warren G, Hayes D, Lowe D, Prior B, Armstrong R
J Physiol. 1993; 464:477-89.
PMID: 8229814
PMC: 1175397.
DOI: 10.1113/jphysiol.1993.sp019646.
Mechanical properties of the frog sarcolemma.
Fields R
Biophys J. 1970; 10(5):462-79.
PMID: 5439320
PMC: 1367777.
DOI: 10.1016/S0006-3495(70)86312-3.
The anisotropic elastic properties of the sarcolemma of the frog semitendinosus muscle fiber.
Rapoport S
Biophys J. 1973; 13(1):14-36.
PMID: 4541138
PMC: 1484174.
DOI: 10.1016/S0006-3495(73)85967-3.
Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length.
Rapoport S
J Gen Physiol. 1972; 59(5):559-85.
PMID: 4537306
PMC: 2203191.
DOI: 10.1085/jgp.59.5.559.
Arrangement of smooth muscle cells and intramuscular septa in the taenia coli.
Gabella G
Cell Tissue Res. 1977; 184(2):195-212.
PMID: 922869
DOI: 10.1007/BF00223068.