Jaeschke H, Ramachandran A
J Clin Transl Hepatol. 2024; 12(12):1057-1066.
PMID: 39649034
PMC: 11622198.
DOI: 10.14218/JCTH.2024.00324.
Pizzimenti S, Ribero S, Cucci M, Grattarola M, Monge C, Dianzani C
Antioxidants (Basel). 2021; 10(12).
PMID: 34943045
PMC: 8750393.
DOI: 10.3390/antiox10121942.
Pearson A, Carmicheal J, Jiang L, Lei Y, Green M
Int J Mol Sci. 2021; 22(22).
PMID: 34830482
PMC: 8622791.
DOI: 10.3390/ijms222212603.
Sharma A, Flora S
Oxid Med Cell Longev. 2021; 2021:9074206.
PMID: 34007410
PMC: 8102094.
DOI: 10.1155/2021/9074206.
Shi Z, Zhang L, Zheng J, Sun H, Shao C
Front Oncol. 2021; 11:579286.
PMID: 33868986
PMC: 8047310.
DOI: 10.3389/fonc.2021.579286.
Emerging mechanisms and targeted therapy of ferroptosis in cancer.
Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J
Mol Ther. 2021; 29(7):2185-2208.
PMID: 33794363
PMC: 8261167.
DOI: 10.1016/j.ymthe.2021.03.022.
Hexa Histidine-Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species.
Dat N, Thuy L, Hieu V, Hai H, Hoang D, Hai N
Hepatology. 2021; 73(6):2527-2545.
PMID: 33576020
PMC: 8251927.
DOI: 10.1002/hep.31752.
Demystifying Oxidative Stress.
Ghezzi P, Mooradian A
Handb Exp Pharmacol. 2020; 264:3-26.
PMID: 32767143
DOI: 10.1007/164_2020_379.
Role of cytoglobin, a novel radical scavenger, in stellate cell activation and hepatic fibrosis.
Thuy L, Hai H, Kawada N
Clin Mol Hepatol. 2020; 26(3):280-293.
PMID: 32492766
PMC: 7364355.
DOI: 10.3350/cmh.2020.0037.
Evolution of the Knowledge of Free Radicals and Other Oxidants.
Di Meo S, Venditti P
Oxid Med Cell Longev. 2020; 2020:9829176.
PMID: 32411336
PMC: 7201853.
DOI: 10.1155/2020/9829176.
Selective overexpression of cytoglobin in stellate cells attenuates thioacetamide-induced liver fibrosis in mice.
Hai N, Thuy L, Shiota A, Kadono C, Daikoku A, Hoang D
Sci Rep. 2018; 8(1):17860.
PMID: 30552362
PMC: 6294752.
DOI: 10.1038/s41598-018-36215-4.
The development of the concept of ferroptosis.
Hirschhorn T, Stockwell B
Free Radic Biol Med. 2018; 133:130-143.
PMID: 30268886
PMC: 6368883.
DOI: 10.1016/j.freeradbiomed.2018.09.043.
Ethanol-induced oxidative stress: basic knowledge.
Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A
Genes Nutr. 2010; 5(2):101-9.
PMID: 20606811
PMC: 2885167.
DOI: 10.1007/s12263-009-0159-9.
Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes.
Esterbauer H, Cheeseman K, DIANZANI M, Poli G, Slater T
Biochem J. 1982; 208(1):129-40.
PMID: 7159389
PMC: 1153938.
DOI: 10.1042/bj2080129.
Free-radical mechanisms in tissue injury.
Slater T
Biochem J. 1984; 222(1):1-15.
PMID: 6383353
PMC: 1144137.
DOI: 10.1042/bj2220001.
Alterations in microsomal electron transport, oxidative N-demethylation and azo-dye cleavage in carbon tetrachloride and dimethylnitrosamine-induced liver injury.
SMUCKLER E, Arrhenius E, Hultin T
Biochem J. 1967; 103(1):55-64.
PMID: 6040018
PMC: 1270368.
DOI: 10.1042/bj1030055.
Changes in microsomal lipids of rat liver after chronic carbon tetrachloride intoxication.
Comporti M, Landucci G, Raja F
Experientia. 1971; 27(10):1155-6.
PMID: 5127858
DOI: 10.1007/BF02286894.
Increased concentrations of malonaldehyde in the livers of rats treated with carbon tetrachloride.
Jose P, Slater T
Biochem J. 1972; 128(4):141P.
PMID: 4638783
PMC: 1173963.
DOI: 10.1042/bj1280141pa.
The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used.
Slater T, Sawyer B
Biochem J. 1971; 123(5):805-14.
PMID: 4399399
PMC: 1177080.
DOI: 10.1042/bj1230805.
The inhibitory effects in vitro of phenothiazines and other drugs on lipid-peroxidation systems in rat liver microsomes, and their relationship to the liver necrosis produced by carbon tetrachloride.
Slater T
Biochem J. 1968; 106(1):155-60.
PMID: 4388686
PMC: 1198481.
DOI: 10.1042/bj1060155.