Safari M, Woerl P, Garmsiri C, Weber D, Kwiatkowski M, Hotze M
Mol Metab. 2024; 88():102018.
PMID: 39182844
PMC: 11404074.
DOI: 10.1016/j.molmet.2024.102018.
Neumann N, Friz S, Forchhammer K
mBio. 2022; 13(4):e0146922.
PMID: 35856562
PMC: 9426568.
DOI: 10.1128/mbio.01469-22.
Morava E, Schatz U, Torring P, Abbott M, Baumann M, Brasch-Andersen C
Am J Hum Genet. 2021; 108(6):1151-1160.
PMID: 33979636
PMC: 8206387.
DOI: 10.1016/j.ajhg.2021.04.017.
Dienel G
Neurochem Res. 2020; 45(11):2586-2606.
PMID: 32949339
DOI: 10.1007/s11064-020-03124-w.
Dienel G
Neurochem Res. 2020; 45(11):2529-2552.
PMID: 32815045
DOI: 10.1007/s11064-020-03113-z.
Structural Basis of the Molecular Switch between Phosphatase and Mutase Functions of Human Phosphomannomutase 1 under Ischemic Conditions.
Ji T, Zhang C, Zheng L, Dunaway-Mariano D, Allen K
Biochemistry. 2018; 57(25):3480-3492.
PMID: 29695157
PMC: 10251306.
DOI: 10.1021/acs.biochem.8b00223.
Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation.
Dienel G, Cruz N, Sokoloff L, Driscoll B
Neurochem Res. 2015; 42(1):50-63.
PMID: 26141225
DOI: 10.1007/s11064-015-1650-x.
Evolutionary history and functional diversification of phosphomannomutase genes.
Quental R, Moleirinho A, Azevedo L, Amorim A
J Mol Evol. 2010; 71(2):119-27.
PMID: 20661555
DOI: 10.1007/s00239-010-9368-5.
Mammalian phosphomannomutase PMM1 is the brain IMP-sensitive glucose-1,6-bisphosphatase.
Veiga-da-Cunha M, Vleugels W, Maliekal P, Matthijs G, Van Schaftingen E
J Biol Chem. 2008; 283(49):33988-93.
PMID: 18927083
PMC: 2662221.
DOI: 10.1074/jbc.M805224200.
Evidence for a light dependent increase of phosphoglucomutase activity in isolated, intact spinach chloroplasts.
Sicher R
Plant Physiol. 1989; 89(2):557-63.
PMID: 16666582
PMC: 1055881.
DOI: 10.1104/pp.89.2.557.
Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
Katz A, Andersson D, Yu J, Norman B, Sandstrom M, Wieringa B
J Physiol. 2003; 553(Pt 2):523-31.
PMID: 12963789
PMC: 2343558.
DOI: 10.1113/jphysiol.2003.051078.
Ca2+-induced changes in energy metabolism and viability of melanoma cells.
Penso J, Beitner R
Br J Cancer. 1999; 81(2):219-24.
PMID: 10496345
PMC: 2362860.
DOI: 10.1038/sj.bjc.6690680.
Rapid activation of glycogen synthase and protein phosphatase in human skeletal muscle after isometric contraction requires an intact circulation.
Katz A, Raz I
Pflugers Arch. 1995; 431(2):259-65.
PMID: 9026787
DOI: 10.1007/BF00410199.
Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation.
Cadefau J, Parra J, Cusso R, Heine G, Pette D
Pflugers Arch. 1993; 424(5-6):529-37.
PMID: 8255737
DOI: 10.1007/BF00374918.
Hexose diphosphates and phosphofructokinase in rat brain during development.
Dombrowski Jr G, Swiatek K, Chao K
Neurochem Res. 1994; 19(10):1301-10.
PMID: 7891848
DOI: 10.1007/BF01006822.
Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors.
Van Schaftingen E, Jett M, Hue L, HERS H
Proc Natl Acad Sci U S A. 1981; 78(6):3483-6.
PMID: 6455662
PMC: 319593.
DOI: 10.1073/pnas.78.6.3483.
The glycolytic cascade in pancreatic islets.
Malaisse W, Malaisse-Lagae F, Sener A
Diabetologia. 1982; 23(1):1-5.
PMID: 6214444
DOI: 10.1007/BF00257721.
Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction.
Bassols A, Carreras J, Cusso R
Biochem J. 1986; 240(3):747-51.
PMID: 3827864
PMC: 1147482.
DOI: 10.1042/bj2400747.
Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain.
Dombrowski Jr G, Swiatek K, Chao K
Neurochem Res. 1989; 14(7):667-75.
PMID: 2779727
DOI: 10.1007/BF00964877.
Transient increase in glucose 1,6-bisphosphate in human skeletal muscle during isometric contraction.
Lee A, Katz A
Biochem J. 1989; 258(3):915-8.
PMID: 2730576
PMC: 1138452.
DOI: 10.1042/bj2580915.