Kurihara S, Fukuda N
J Physiol Sci. 2024; 74(1):12.
PMID: 38383293
PMC: 10882819.
DOI: 10.1186/s12576-024-00906-7.
Porta-de-la-Riva M, Morales-Curiel L, Carolina Gonzalez A, Krieg M
Neurophotonics. 2024; 11(2):024203.
PMID: 38348359
PMC: 10861157.
DOI: 10.1117/1.NPh.11.2.024203.
Bolanos P, Calderon J
Front Physiol. 2022; 13:989796.
PMID: 36117698
PMC: 9478590.
DOI: 10.3389/fphys.2022.989796.
Iseppon F, Linley J, Wood J
Neurobiol Pain. 2022; 11:100083.
PMID: 35079661
PMC: 8777277.
DOI: 10.1016/j.ynpai.2021.100083.
Park Y, Park S, Eom K
Micromachines (Basel). 2021; 12(8).
PMID: 34442547
PMC: 8400671.
DOI: 10.3390/mi12080925.
The relationship between form and function throughout the history of excitation-contraction coupling.
Franzini-Armstrong C
J Gen Physiol. 2018; 150(2):189-210.
PMID: 29317466
PMC: 5806676.
DOI: 10.1085/jgp.201711889.
Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging.
Schultz S, Copeland C, Foust A, Quicke P, Schuck R
Proc IEEE Inst Electr Electron Eng. 2017; 105(1):139-157.
PMID: 28757657
PMC: 5526632.
DOI: 10.1109/JPROC.2016.2577380.
Monitoring activity in neural circuits with genetically encoded indicators.
Broussard G, Liang R, Tian L
Front Mol Neurosci. 2014; 7:97.
PMID: 25538558
PMC: 4256991.
DOI: 10.3389/fnmol.2014.00097.
Seeing is believing! Imaging Ca2+-signalling events in living cells.
McGeown J
Exp Physiol. 2010; 95(11):1049-60.
PMID: 20696785
PMC: 3035820.
DOI: 10.1113/expphysiol.2010.052456.
Monitoring neural activity with bioluminescence during natural behavior.
Naumann E, Kampff A, Prober D, Schier A, Engert F
Nat Neurosci. 2010; 13(4):513-20.
PMID: 20305645
PMC: 2846983.
DOI: 10.1038/nn.2518.
Plant calcium signaling and monitoring: pros and cons and recent experimental approaches.
Plieth C
Protoplasma. 2001; 218(1-2):1-23.
PMID: 11732314
DOI: 10.1007/BF01288356.
Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes.
Brini M, De Giorgi F, Murgia M, Marsault R, Massimino M, Cantini M
Mol Biol Cell. 1997; 8(1):129-43.
PMID: 9017601
PMC: 276065.
DOI: 10.1091/mbc.8.1.129.
Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells.
Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T
EMBO J. 1995; 14(22):5467-75.
PMID: 8521803
PMC: 394660.
DOI: 10.1002/j.1460-2075.1995.tb00233.x.
Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres.
Caputo C, EDMAN K, Lou F, Sun Y
J Physiol. 1994; 478 ( Pt 1):137-48.
PMID: 7965829
PMC: 1155652.
DOI: 10.1113/jphysiol.1994.sp020237.
Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban.
Tada M, Yamada M, Kadoma M, Inui M, Ohmori F
Mol Cell Biochem. 1982; 46(2):73-95.
PMID: 6287209
DOI: 10.1007/BF00236776.
A two-channel transmitter for the telemetry of cat electrocorticograms.
Green D, Shore J
J Physiol. 1969; 203(1):1P-2P.
PMID: 5821875
PMC: 1351404.
Isometric muscle contraction and the active state: an analog computer study.
Taylor C
Biophys J. 1969; 9(6):759-80.
PMID: 5815819
PMC: 1367474.
DOI: 10.1016/s0006-3495(69)86416-7.
Membrane calcium current in ventricular myocardial fibres.
Beeler Jr G, Reuter H
J Physiol. 1970; 207(1):191-209.
PMID: 5503869
PMC: 1348700.
DOI: 10.1113/jphysiol.1970.sp009056.
On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres.
Ashley C, Ridgway E
J Physiol. 1970; 209(1):105-30.
PMID: 5499037
PMC: 1396043.
DOI: 10.1113/jphysiol.1970.sp009158.
The efflux of calcium from single crab and barnacle muscle fibres.
Ashley C, CALDWELL P, Lowe A
J Physiol. 1972; 223(3):735-55.
PMID: 5045739
PMC: 1331479.
DOI: 10.1113/jphysiol.1972.sp009872.