» Articles » PMID: 5514158

The Water and Nonelectrolyte Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B

Overview
Journal J Gen Physiol
Specialty Physiology
Date 1970 Jul 1
PMID 5514158
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, P(f), is equal to the tagged water permeability coefficient, (P(d))(w); in the nystatin- or amphotericin B-treated membrane, P(f)/(P(d))(w) approximately 3. The unmodified membrane is virtually impermeable to small hydrophilic solutes, such as urea, ethylene glycol, and glycerol; the nystatin- or amphotericin B-treated membrane displays a graded permeability to these solutes on the basis of size. This graded permeability is manifest both in the tracer permeabilities, P(d), and in the reflection coefficients, sigma (Table I). The "cutoff" in permeability occurs with molecules about the size of glucose (Stokes-Einstein radius approximate, equals 4 A). We conclude that nystatin and amphotericin B create aqueous pores in thin lipid membranes; the effective radius of these pores is approximately 4 A. There is a marked similarity between the permeability of a nystatin- or amphotericin B-treated membrane to water and small hydrophilic solutes and the permeability of the human red cell membrane to these same molecules.

Citing Articles

Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit .

Toepfer S, Keniya M, Lackner M, Monk B J Fungi (Basel). 2024; 10(10).

PMID: 39452650 PMC: 11508803. DOI: 10.3390/jof10100698.


Semisynthetic Amides of Amphotericin B and Nystatin A: A Comparative Study of In Vitro Activity/Toxicity Ratio in Relation to Selectivity to Ergosterol Membranes.

Tevyashova A, Efimova S, Alexandrov A, Omelchuk O, Ghazy E, Bychkova E Antibiotics (Basel). 2023; 12(1).

PMID: 36671352 PMC: 9854944. DOI: 10.3390/antibiotics12010151.


Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications.

Haro-Reyes T, Diaz-Peralta L, Galvan-Hernandez A, Rodriguez-Lopez A, Rodriguez-Fragoso L, Ortega-Blake I Membranes (Basel). 2022; 12(7).

PMID: 35877884 PMC: 9316096. DOI: 10.3390/membranes12070681.


Characteristics of the Protein Complexes and Pores Formed by Hemolysin BL.

Jessberger N, Dietrich R, Schauer K, Schwemmer S, Martlbauer E, Benz R Toxins (Basel). 2020; 12(11).

PMID: 33114414 PMC: 7694065. DOI: 10.3390/toxins12110672.


Colicin U from Shigella boydii Forms Voltage-Dependent Pores.

Dolejsova T, Sokol A, Bosak J, Smajs D, Konopasek I, Mikusova G J Bacteriol. 2019; 201(24).

PMID: 31548276 PMC: 6872204. DOI: 10.1128/JB.00493-19.


References
1.
Cass A, Finkelstein A . Water permeability of thin lipid membranes. J Gen Physiol. 1967; 50(6):1765-84. PMC: 2225726. DOI: 10.1085/jgp.50.6.1765. View

2.
Finkelstein A, Cass A . Effect of cholesterol on the water permeability of thin lipid membranes. Nature. 1967; 216(5116):717-8. DOI: 10.1038/216717a0. View

3.
Lippe C . Effects of Amphotericin B on thiourea permeability of phospholipid and cholesterol bilayer membranes. J Mol Biol. 1968; 35(3):635-7. DOI: 10.1016/s0022-2836(68)80019-1. View

4.
Andreoli T, Dennis V, Weigl A . The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J Gen Physiol. 1969; 53(2):133-56. PMC: 2202904. DOI: 10.1085/jgp.53.2.133. View

5.
Everitt C, Redwood W, Haydon D . Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes. J Theor Biol. 1969; 22(1):20-32. DOI: 10.1016/0022-5193(69)90077-0. View