Graham L, Davies P
BMC Mol Cell Biol. 2024; 25(1):27.
PMID: 39736515
PMC: 11687183.
DOI: 10.1186/s12860-024-00525-5.
Deleray A, Saini S, Wallberg A, Kramer J
Chem Mater. 2024; 36(7):3424-3434.
PMID: 38699199
PMC: 11064932.
DOI: 10.1021/acs.chemmater.4c00266.
Lopes J, Veiga V, Seminiuk B, Santos L, Luiz A, Fernandes C
Braz J Microbiol. 2024; 55(2):1451-1463.
PMID: 38656427
PMC: 11153389.
DOI: 10.1007/s42770-024-01345-7.
Ghalamara S, Silva S, Brazinha C, Pintado M
Bioresour Bioprocess. 2024; 9(1):5.
PMID: 38647561
PMC: 10992025.
DOI: 10.1186/s40643-022-00494-7.
Melnik B, Glukhova K, Sokolova Voronova E, Balalaeva I, Garbuzynskiy S, Finkelstein A
Biomolecules. 2024; 14(1).
PMID: 38254654
PMC: 10813080.
DOI: 10.3390/biom14010054.
Psychrophiles to control ice-water phase changes in frost-susceptible soils.
Rahman R, Bheemasetti T, Govil T, Sani R
Sci Rep. 2024; 14(1):477.
PMID: 38177218
PMC: 10766620.
DOI: 10.1038/s41598-023-51060-w.
Multiscale Molecular Dynamics Simulations of Ice-Binding Proteins.
Hudait A
Methods Mol Biol. 2023; 2730:185-202.
PMID: 37943459
DOI: 10.1007/978-1-0716-3503-2_13.
Divergent Mechanisms of Ice Growth Inhibition by Antifreeze Proteins.
Drori R, Stevens C
Methods Mol Biol. 2023; 2730:169-181.
PMID: 37943458
DOI: 10.1007/978-1-0716-3503-2_12.
Identifying Ice-Binding Proteins in Nature.
DeVries A
Methods Mol Biol. 2023; 2730:3-23.
PMID: 37943447
DOI: 10.1007/978-1-0716-3503-2_1.
Brassica juncea leaf cuticle contains xylose and mannose (xylomannan) which inhibit ice recrystallization on the leaf surface.
Yadav K, Arya M, Prakash S, Jha B, Manchanda P, Kumar A
Planta. 2023; 258(2):44.
PMID: 37460860
DOI: 10.1007/s00425-023-04203-2.
Isolation and characterization of wheat ice recrystallisation inhibition gene promoter involved in low temperature and methyl jasmonate responses.
Jin Y, Ding X, Li J, Guo Z
Physiol Mol Biol Plants. 2022; 28(11-12):1969-1979.
PMID: 36573144
PMC: 9789242.
DOI: 10.1007/s12298-022-01257-6.
Propagation of a De Novo Gene under Natural Selection: Antifreeze Glycoprotein Genes and Their Evolutionary History in Codfishes.
Zhuang X, Cheng C
Genes (Basel). 2021; 12(11).
PMID: 34828383
PMC: 8622921.
DOI: 10.3390/genes12111777.
Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique.
Perez A, Taing K, Quon J, Flores A, Ba Y
Crystals (Basel). 2020; 9(7).
PMID: 33224522
PMC: 7678753.
DOI: 10.3390/cryst9070352.
Identifying Antifreeze Proteins Based on Key Evolutionary Information.
Sun S, Ding H, Wang D, Han S
Front Bioeng Biotechnol. 2020; 8:244.
PMID: 32274383
PMC: 7113384.
DOI: 10.3389/fbioe.2020.00244.
Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry.
Bialkowska A, Majewska E, Olczak A, Twarda-Clapa A
Biomolecules. 2020; 10(2).
PMID: 32053888
PMC: 7072191.
DOI: 10.3390/biom10020274.
The Ensemble of Conformations of Antifreeze Glycoproteins (AFGP8): A Study Using Nuclear Magnetic Resonance Spectroscopy.
Her C, Yeh Y, Krishnan V
Biomolecules. 2019; 9(6).
PMID: 31213033
PMC: 6628104.
DOI: 10.3390/biom9060235.
Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
Flores A, Quon J, Perez A, Ba Y
Eur Biophys J. 2018; 47(6):611-630.
PMID: 29487966
PMC: 6709975.
DOI: 10.1007/s00249-018-1285-3.
Ice-Binding Proteins in Plants.
Bredow M, Walker V
Front Plant Sci. 2018; 8:2153.
PMID: 29312400
PMC: 5744647.
DOI: 10.3389/fpls.2017.02153.
Polymer mimics of biomacromolecular antifreezes.
Biggs C, Bailey T, Graham B, Stubbs C, Fayter A, Gibson M
Nat Commun. 2017; 8(1):1546.
PMID: 29142216
PMC: 5688100.
DOI: 10.1038/s41467-017-01421-7.
Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein.
Wang C, Pakhomova S, Newcomer M, Christner B, Luo B
PLoS One. 2017; 12(11):e0187169.
PMID: 29108002
PMC: 5673226.
DOI: 10.1371/journal.pone.0187169.