Doi K, Takeuchi S, Yamazaki H, Tsuji T, Kawano S
Int J Numer Method Biomed Eng. 2024; 41(1):e3896.
PMID: 39721994
PMC: 11669623.
DOI: 10.1002/cnm.3896.
Milozzi A, Ricci S, Ielmini D
Nat Commun. 2024; 15(1):2812.
PMID: 38561389
PMC: 10985068.
DOI: 10.1038/s41467-024-47228-1.
Celiker E, Woodrow C, Mhatre N, Montealegre-Z F
Front Insect Sci. 2024; 2:957385.
PMID: 38468802
PMC: 10926389.
DOI: 10.3389/finsc.2022.957385.
Lee J, Park S, Perez-Flores M, Chen Y, Kang M, Choi J
eNeuro. 2024; 11(2).
PMID: 38378628
PMC: 11059428.
DOI: 10.1523/ENEURO.0462-23.2023.
Liu J, Bai Y, Cheng Q, Zheng S, Elliott S, Ni G
Curr Res Neurobiol. 2022; 3:100045.
PMID: 36518340
PMC: 9743062.
DOI: 10.1016/j.crneur.2022.100045.
A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations.
Liu A, Henin S, Abbaspoor S, Bragin A, Buffalo E, Farrell J
Nat Commun. 2022; 13(1):6000.
PMID: 36224194
PMC: 9556539.
DOI: 10.1038/s41467-022-33536-x.
An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
He W, Burwood G, Fridberger A, Nuttall A, Ren T
Hear Res. 2021; 423:108407.
PMID: 34922772
PMC: 9156726.
DOI: 10.1016/j.heares.2021.108407.
The origin of mechanical harmonic distortion within the organ of Corti in living gerbil cochleae.
He W, Ren T
Commun Biol. 2021; 4(1):1008.
PMID: 34433876
PMC: 8387486.
DOI: 10.1038/s42003-021-02540-0.
A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications.
Baby D, Van Den Broucke A, Verhulst S
Nat Mach Intell. 2021; 3(2):134-143.
PMID: 33629031
PMC: 7116797.
DOI: 10.1038/s42256-020-00286-8.
Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics.
Wang H, Hong S, Han J, Jung Y, Jeong H, Im T
Sci Adv. 2021; 7(7).
PMID: 33579699
PMC: 7880591.
DOI: 10.1126/sciadv.abe5683.
A Novel Frequency Selectivity Approach Based on Travelling Wave Propagation in Mechanoluminescence Basilar Membrane for Artificial Cochlea.
Kim Y, Kim J, Kim G
Sci Rep. 2018; 8(1):12023.
PMID: 30104692
PMC: 6089901.
DOI: 10.1038/s41598-018-30633-0.
Inner ear ossification and mineralization kinetics in human embryonic development - microtomographic and histomorphological study.
Richard C, Courbon G, Laroche N, Prades J, Vico L, Malaval L
Sci Rep. 2017; 7(1):4825.
PMID: 28684743
PMC: 5500530.
DOI: 10.1038/s41598-017-05151-0.
Finite-element model of the active organ of Corti.
Ni G, Elliott S, Baumgart J
J R Soc Interface. 2016; 13(115):20150913.
PMID: 26888950
PMC: 4780563.
DOI: 10.1098/rsif.2015.0913.
A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model.
Jang J, Lee J, Woo S, Sly D, Campbell L, Cho J
Sci Rep. 2015; 5:12447.
PMID: 26227924
PMC: 4521187.
DOI: 10.1038/srep12447.
Form and function of the mammalian inner ear.
Ekdale E
J Anat. 2015; 228(2):324-37.
PMID: 25911945
PMC: 4718163.
DOI: 10.1111/joa.12308.
Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti.
Ekdale E, Racicot R
J Anat. 2014; 226(1):22-39.
PMID: 25400023
PMC: 4313896.
DOI: 10.1111/joa.12253.
Modelling cochlear mechanics.
Ni G, Elliott S, Ayat M, Teal P
Biomed Res Int. 2014; 2014:150637.
PMID: 25136555
PMC: 4130145.
DOI: 10.1155/2014/150637.
Light-induced vibration in the hearing organ.
Ren T, He W, Li Y, Grosh K, Fridberger A
Sci Rep. 2014; 4:5941.
PMID: 25087606
PMC: 4120310.
DOI: 10.1038/srep05941.
Electrically evoked auditory nerve responses in the cochlea with normal outer hair cells.
Ren T, Guo M, He W, Miller J, Nuttall A
J Otol. 2011; 4(2):71-75.
PMID: 22034583
PMC: 3201821.
DOI: 10.1016/s1672-2930(09)50017-7.
Piezoelectric materials mimic the function of the cochlear sensory epithelium.
Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T
Proc Natl Acad Sci U S A. 2011; 108(45):18390-5.
PMID: 22025702
PMC: 3215034.
DOI: 10.1073/pnas.1110036108.