Gfeller E, Walser M
J Membr Biol. 2013; 4(1):16-28.
PMID: 24174226
DOI: 10.1007/BF02431958.
Gabello M, Valenzano M, Barr M, Zurbach P, Mullin J
Dig Dis Sci. 2009; 55(5):1255-63.
PMID: 19513837
DOI: 10.1007/s10620-009-0851-z.
Karande P, Mitragotri S
Pharm Res. 2003; 20(2):257-63.
PMID: 12636165
DOI: 10.1023/a:1022231406277.
Civan M, Bookman R
J Membr Biol. 1982; 65(1-2):63-80.
PMID: 7057462
DOI: 10.1007/BF01870470.
Bobrycki V, MILLS J, Macknight A, Dibona D
J Membr Biol. 1981; 60(1):21-33.
PMID: 6787205
DOI: 10.1007/BF01870829.
Changes in the intestinal transport of sodium induced by exposure of goldfish to a saline environment.
Ellory J, Lahlou B, Smith M
J Physiol. 1972; 222(2):497-509.
PMID: 5033474
PMC: 1331395.
DOI: 10.1113/jphysiol.1972.sp009811.
The mechanism of lithium accumulation in the isolated frog skin epithelium.
Leblanc G
Pflugers Arch. 1972; 337(1):1-18.
PMID: 4674011
DOI: 10.1007/BF00587867.
Components of sodium and chloride flux across toad bladder.
Walser M
Biophys J. 1972; 12(4):351-68.
PMID: 4623090
PMC: 1484122.
DOI: 10.1016/S0006-3495(72)86089-2.
Response of the frog skin to steady-state voltage clamping. I. The shunt pathway.
Mandel L, Curran P
J Gen Physiol. 1972; 59(5):503-18.
PMID: 4537305
PMC: 2203195.
DOI: 10.1085/jgp.59.5.503.
Electrical properties of the medullary collecting ducts of the golden hamster kidney. II. The transepithelial resistance.
Rau W, Fromter E
Pflugers Arch. 1974; 351(2):113-31.
PMID: 4473141
DOI: 10.1007/BF00587431.
Passive ion fluxes across toad bladder.
Chen J, Walser M
J Membr Biol. 1974; 18(3-4):365-78.
PMID: 4214037
DOI: 10.1007/BF01870123.
Effect of pH on potential difference and short circuit current in the isolated human cornea.
Fischer F, Voigt G, LIEGL O, Wiederholt M
Pflugers Arch. 1974; 349(2):119-31.
PMID: 4211961
Effect of aldosterone on active and passive conductance and ENA in the toad bladder.
Saito T, Essig A
J Membr Biol. 1973; 13(1):1-18.
PMID: 4201709
DOI: 10.1007/BF01868217.
A method to quantify and correct for edge leaks in Ussing chambers.
Kottra G, Weber G, Fromter E
Pflugers Arch. 1989; 415(2):235-40.
PMID: 2594479
DOI: 10.1007/BF00370598.
Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes.
Okada Y, Irimajiri A, INOUYE A
J Membr Biol. 1977; 31(3):221-32.
PMID: 845930
DOI: 10.1007/BF01869406.
Basic electrical properties of tight epithelia determined with a simple method.
Erlij D
Pflugers Arch. 1976; 364(1):91-3.
PMID: 822395
DOI: 10.1007/BF01062917.
Electrical properties of amphibian urinary bladder epithelia. I. Inverse relationship between potential difference and resistance in tightly mounted preparations.
HIGGINS Jr J, Cesaro L, Gebler B, Fromter E
Pflugers Arch. 1975; 358(1):41-56.
PMID: 808794
DOI: 10.1007/BF00584568.
The paracellular pathway in toad urinary bladder: permselectivity and kinetics of opening.
Finn A, Bright J
J Membr Biol. 1978; 44(1):67-83.
PMID: 731683
DOI: 10.1007/BF01940574.
Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens.
Claude P
J Membr Biol. 1978; 39(2-3):219-32.
PMID: 641977
DOI: 10.1007/BF01870332.
Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway.
Civan M, Dibona D
J Membr Biol. 1978; 38(4):359-86.
PMID: 564969
DOI: 10.1007/BF01870152.