Bolanos P, Calderon J
Front Physiol. 2022; 13:989796.
PMID: 36117698
PMC: 9478590.
DOI: 10.3389/fphys.2022.989796.
Yamada K
J Physiol Sci. 2016; 67(1):19-43.
PMID: 27412384
PMC: 10717381.
DOI: 10.1007/s12576-016-0470-3.
Chapman R, Leoty C
J Physiol. 1976; 256(2):287-314.
PMID: 16992504
PMC: 1309309.
DOI: 10.1113/jphysiol.1976.sp011326.
CURTIS B
J Muscle Res Cell Motil. 1994; 15(1):49-58.
PMID: 8182109
DOI: 10.1007/BF00123832.
Moglia A, Alfonsi E, Piccolo G, Lozza A, Arrigo A, Bollani E
Ital J Neurol Sci. 1995; 16(3):159-66.
PMID: 7558770
DOI: 10.1007/BF02282983.
Calcium model for mammalian skeletal muscle.
Boom H, Heijink R, van der Vliet G
Med Biol Eng Comput. 1981; 19(6):734-48.
PMID: 7329111
DOI: 10.1007/BF02441335.
Ultrastructure of muscle fibres in head and axial muscles of the perch (Perca fluviatilis L.). A quantitative study.
Akster H
Cell Tissue Res. 1981; 219(1):111-31.
PMID: 7285089
DOI: 10.1007/BF00210022.
Temperature dependence of enhancement and diminution of tension evoked by staircase and by tetanus in rat muscle.
Krarup C
J Physiol. 1981; 311:373-87.
PMID: 7264973
PMC: 1275415.
DOI: 10.1113/jphysiol.1981.sp013590.
Cholesterol distribution and structural differentiation in the sarcoplasmic reticulum of rat cardiac muscle cells. A freeze-fracture cytochemical investigation.
Severs N
Cell Tissue Res. 1982; 224(3):613-24.
PMID: 7116414
DOI: 10.1007/BF00213756.
Quantitative aspects of the calcium concept of excitation contraction coupling--a critical evaluation.
Hasselbach W
Basic Res Cardiol. 1980; 75(1):2-12.
PMID: 6992766
DOI: 10.1007/BF02001387.
Effect of muscle length on energy balance in frog skeletal muscle.
Curtin N, Woledge R
J Physiol. 1981; 316:453-68.
PMID: 6976425
PMC: 1248155.
DOI: 10.1113/jphysiol.1981.sp013800.
Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study.
Somlyo A, Shuman H, McClellan G, Somlyo A
J Cell Biol. 1981; 90(3):577-94.
PMID: 6974735
PMC: 2111900.
DOI: 10.1083/jcb.90.3.577.
Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.
Dawson M, Gadian D, WILKIE D
J Physiol. 1980; 299:465-84.
PMID: 6966688
PMC: 1279237.
DOI: 10.1113/jphysiol.1980.sp013137.
Calcium transients in frog skeletal muscle fibres following conditioning stimuli.
Miledi R, Parker I, Zhu P
J Physiol. 1983; 339:223-42.
PMID: 6887023
PMC: 1199158.
DOI: 10.1113/jphysiol.1983.sp014713.
An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle.
Oetliker H
J Muscle Res Cell Motil. 1982; 3(3):247-72.
PMID: 6752197
DOI: 10.1007/BF00713037.
Arsenazo III calcium transients and latency relaxation in frog skeletal muscle fibres at different sarcomere lengths.
Close R, Lannergren J
J Physiol. 1984; 355:323-44.
PMID: 6491994
PMC: 1193494.
DOI: 10.1113/jphysiol.1984.sp015422.
Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum.
Jorgensen A, Campbell K
J Cell Biol. 1984; 98(4):1597-602.
PMID: 6371026
PMC: 2113214.
DOI: 10.1083/jcb.98.4.1597.
Muscle calcium transient. Effect of post-stimulus length changes in single fibers.
Ridgway E, Gordon A
J Gen Physiol. 1984; 83(1):75-103.
PMID: 6319546
PMC: 2215622.
DOI: 10.1085/jgp.83.1.75.
Monovalent ion and calcium ion fluxes in sarcoplasmic reticulum.
Meissner G
Mol Cell Biochem. 1983; 55(1):65-82.
PMID: 6312285
DOI: 10.1007/BF00229243.
Excitation-contraction coupling in amphioxus muscle cells.
Hagiwara S, Henkart M, Kidokoro Y
J Physiol. 1971; 219(1):233-51.
PMID: 5158596
PMC: 1331627.
DOI: 10.1113/jphysiol.1971.sp009659.