A Proposed Common Allosteric Mechanism for Active Transport, Muscle Contraction, and Ribosomal Translocation
Overview
Authors
Affiliations
It is suggested that active transport, muscle contraction, and ribosomal translocation may all make use of a common allosteric mechanism in which ATP or GTP serves as both the effector and substrate and in which a conformational change in a protein (enzyme) moves or exerts a force on a second ligand. The enzymatic splitting of ATP or GTP provides the driving force for the process and allows repetition of the steady-state cycle.
In Vivo Properties of Membrane-bound Phytochrome.
Boisard J, Marme D, Briggs W Plant Physiol. 1974; 54(3):272-6.
PMID: 16658872 PMC: 367395. DOI: 10.1104/pp.54.3.272.
Kowalczykowski S, Krupp R Proc Natl Acad Sci U S A. 1995; 92(8):3478-82.
PMID: 7724585 PMC: 42190. DOI: 10.1073/pnas.92.8.3478.
Phosphate exchange in the pit transport system in Escherichia coli.
Rosenberg H, Russell L, Jacomb P, Chegwidden K J Bacteriol. 1982; 149(1):123-30.
PMID: 7033203 PMC: 216599. DOI: 10.1128/jb.149.1.123-130.1982.
The relation between calcium and contraction kinetics in skinned muscle fibres.
PODOLSKY R, Teichholz L J Physiol. 1970; 211(1):19-35.
PMID: 5500992 PMC: 1395591. DOI: 10.1113/jphysiol.1970.sp009263.
Analysis of a model for active transport.
Hill T Proc Natl Acad Sci U S A. 1970; 65(2):409-16.
PMID: 5263773 PMC: 282918. DOI: 10.1073/pnas.65.2.409.