Quagraine I, Murray J, Cakir G, Beylergil S, Kaudy A, Shaikh A
Invest Ophthalmol Vis Sci. 2024; 65(14):11.
PMID: 39630462
PMC: 11627246.
DOI: 10.1167/iovs.65.14.11.
Cakir G, Murray J, Dulaney C, Ghasia F
Invest Ophthalmol Vis Sci. 2024; 65(3):19.
PMID: 38470326
PMC: 10941996.
DOI: 10.1167/iovs.65.3.19.
Argiles M, Gispets J, Lupon N, Sunyer-Grau B, Rovira-Gay C, Perez-Ternero M
J Optom. 2023; 16(4):277-283.
PMID: 37142504
PMC: 10518761.
DOI: 10.1016/j.optom.2023.04.002.
Gebru E, Alem K, GSilassie M
Clin Optom (Auckl). 2022; 14:149-157.
PMID: 35975269
PMC: 9375996.
DOI: 10.2147/OPTO.S372001.
Chow A, Quan Y, Chui C, Itier R, Thompson B
J Vis. 2021; 21(11):5.
PMID: 34623398
PMC: 8504194.
DOI: 10.1167/jov.21.11.5.
Fixational Eye Movement Waveforms in Amblyopia: Characteristics of Fast and Slow Eye Movements.
Kang S, Beylergil S, Otero-Millan J, Shaikh A, Ghasia F
J Eye Mov Res. 2021; 12(6).
PMID: 33828757
PMC: 7962684.
DOI: 10.16910/jemr.12.6.9.
Effect of dichoptic video game treatment on mild amblyopia - a pilot study.
Pang P, Lam C, Hess R, Thompson B
Acta Ophthalmol. 2020; 99(3):e423-e432.
PMID: 32996689
PMC: 8246520.
DOI: 10.1111/aos.14595.
Rethinking amblyopia 2020.
Levi D
Vision Res. 2020; 176:118-129.
PMID: 32866759
PMC: 7487000.
DOI: 10.1016/j.visres.2020.07.014.
Visuomotor Behaviour in Amblyopia: Deficits and Compensatory Adaptations.
Niechwiej-Szwedo E, Colpa L, Wong A
Neural Plast. 2019; 2019:6817839.
PMID: 31281344
PMC: 6590572.
DOI: 10.1155/2019/6817839.
Fellow Eye Deficits in Amblyopia.
Birch E, Kelly K, Giaschi D
J Binocul Vis Ocul Motil. 2019; 69(3):116-125.
PMID: 31161888
PMC: 6673659.
DOI: 10.1080/2576117X.2019.1624440.
Microsaccade Characteristics in Neurological and Ophthalmic Disease.
Alexander R, Macknik S, Martinez-Conde S
Front Neurol. 2018; 9:144.
PMID: 29593642
PMC: 5859063.
DOI: 10.3389/fneur.2018.00144.
Oculomotor and Vestibular Findings in Gaucher Disease Type 3 and Their Correlation with Neurological Findings.
Bremova-Ertl T, Schiffmann R, Patterson M, Belmatoug N, de Villemeur T, Bardins S
Front Neurol. 2018; 8:711.
PMID: 29379464
PMC: 5775219.
DOI: 10.3389/fneur.2017.00711.
Fixational Saccades and Their Relation to Fixation Instability in Strabismic Monkeys.
Upadhyaya S, Pullela M, Ramachandran S, Adade S, Joshi A, Das V
Invest Ophthalmol Vis Sci. 2017; 58(13):5743-5753.
PMID: 29114840
PMC: 5678548.
DOI: 10.1167/iovs.17-22389.
Impaired Activation of Visual Attention Network for Motion Salience Is Accompanied by Reduced Functional Connectivity between Frontal Eye Fields and Visual Cortex in Strabismic Amblyopia.
Wang H, Crewther S, Liang M, Laycock R, Yu T, Alexander B
Front Hum Neurosci. 2017; 11:195.
PMID: 28484381
PMC: 5399630.
DOI: 10.3389/fnhum.2017.00195.
Fixational saccades are more disconjugate in adults than in children.
Shaikh A, Ghasia F
PLoS One. 2017; 12(4):e0175295.
PMID: 28406944
PMC: 5391133.
DOI: 10.1371/journal.pone.0175295.
Longitudinal Evaluation of Eye Misalignment and Eye Movements Following Surgical Correction of Strabismus in Monkeys.
Pullela M, Degler B, Coats D, Das V
Invest Ophthalmol Vis Sci. 2016; 57(14):6040-6047.
PMID: 27820877
PMC: 5102570.
DOI: 10.1167/iovs.16-20481.
Influence of Target Parameters on Fixation Stability in Normal and Strabismic Monkeys.
Pirdankar O, Das V
Invest Ophthalmol Vis Sci. 2016; 57(3):1087-95.
PMID: 26968739
PMC: 4790473.
DOI: 10.1167/iovs.15-17896.
Saccadic latency in amblyopia.
McKee S, Levi D, Schor C, Movshon J
J Vis. 2016; 16(5):3.
PMID: 26943348
PMC: 5089444.
DOI: 10.1167/16.5.3.
Variability of Ocular Deviation in Strabismus.
Economides J, Adams D, Horton J
JAMA Ophthalmol. 2015; 134(1):63-9.
PMID: 26562632
PMC: 4713272.
DOI: 10.1001/jamaophthalmol.2015.4486.
A compact field guide to the study of microsaccades: Challenges and functions.
Poletti M, Rucci M
Vision Res. 2015; 118:83-97.
PMID: 25689315
PMC: 4537412.
DOI: 10.1016/j.visres.2015.01.018.