Piccirillo F, Lanciotti M, Nusca A, Frau L, Spano A, Liporace P
Int J Mol Sci. 2025; 26(5).
PMID: 40076724
PMC: 11899902.
DOI: 10.3390/ijms26052103.
Mizobuchi A, Maruhashi T, Saito Y, Yamaji T, Harada T, Yusoff F
Sci Rep. 2024; 14(1):30315.
PMID: 39638866
PMC: 11621448.
DOI: 10.1038/s41598-024-81211-6.
Wal P, Aziz N, Singh Y, Wal A, Kosey S, Rai A
Curr Cardiol Rev. 2023; 19(6):23-30.
PMID: 37157208
PMC: 10636795.
DOI: 10.2174/1573403X19666230508114311.
Duan X, Liu X, Zhan Z
Front Cardiovasc Med. 2022; 9:933060.
PMID: 35872916
PMC: 9304552.
DOI: 10.3389/fcvm.2022.933060.
Liu J, Tang M, Li T, Su Z, Zhu Z, Dou C
Front Pharmacol. 2022; 13:811682.
PMID: 35264952
PMC: 8899544.
DOI: 10.3389/fphar.2022.811682.
CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases.
Berndt N, Eckstein J, Wallach I, Nordmeyer S, Kelm M, Kirchner M
Circulation. 2021; 144(24):1926-1939.
PMID: 34762513
PMC: 8663543.
DOI: 10.1161/CIRCULATIONAHA.121.055646.
Impact of Impaired Pancreatic β-Cell Function on Cardiovascular Prognosis in Heart Failure Patients Without Diabetes Mellitus.
Narumi T, Watanabe T, Kato S, Tamura H, Nishiyama S, Takahashi H
Circ Rep. 2021; 1(6):255-260.
PMID: 33693147
PMC: 7889481.
DOI: 10.1253/circrep.CR-19-0033.
KATP Channels in the Cardiovascular System.
Foster M, Coetzee W
Physiol Rev. 2015; 96(1):177-252.
PMID: 26660852
PMC: 4698399.
DOI: 10.1152/physrev.00003.2015.
Selective vulnerability of synaptic signaling and metabolism to nitrosative stress.
Mongin A, Dohare P, Jourdheuil D
Antioxid Redox Signal. 2012; 17(7):992-1012.
PMID: 22339371
PMC: 3411350.
DOI: 10.1089/ars.2012.4559.
Pharmacological preconditioning with diazoxide slows energy metabolism during sustained ischemia.
Schwartz L, Reimer K, Crago M, Jennings R
Exp Clin Cardiol. 2008; 12(3):139-47.
PMID: 18650995
PMC: 2323755.
Newborn hearts are at greater 'metabolic risk' during global ischemia--advantages of continuous coronary washout.
Wittnich C, Belanger M, Bandali K
Can J Cardiol. 2007; 23(3):195-200.
PMID: 17347689
PMC: 2647866.
DOI: 10.1016/s0828-282x(07)70743-2.
Recovery of the chronically hypoxic young rabbit heart reperfused following no-flow ischemia.
Uy R, Ross-Ascuitto N, Ascuitto R
Pediatr Cardiol. 2006; 27(1):37-46.
PMID: 16391992
DOI: 10.1007/s00246-005-1094-1.
Myocardial energy metabolism in ischemic preconditioning and cardioplegia: a metabolic control analysis.
Vogt A, Elsasser A, Pott-Beckert A, Ackermann C, Vetter S, Yildiz M
Mol Cell Biochem. 2005; 278(1-2):223-32.
PMID: 16180108
DOI: 10.1007/s11010-005-7576-x.
Myocardial protection during surgical intervention for treatment of acute myocardial infarction.
Beyersdorf F, Buckberg G
Tex Heart Inst J. 1992; 19(1):26-40.
PMID: 15227467
PMC: 325014.
Performance of the chronically hypoxic young rabbit heart.
Ross-Ascuitto N, Joyce J, Hasan A, Ascuitto R
Pediatr Cardiol. 2004; 25(4):397-405.
PMID: 14743303
DOI: 10.1007/s00246-003-0429-z.
Glucose and glycogen utilisation in myocardial ischemia--changes in metabolism and consequences for the myocyte.
King L, Opie L
Mol Cell Biochem. 1998; 180(1-2):3-26.
PMID: 9546626
Preconditioning the human heart.
Alkhulaifi A
Ann R Coll Surg Engl. 1997; 79(1):49-54.
PMID: 9038496
PMC: 2502609.
Relation between energy metabolism, glycolysis, noradrenaline release and duration of ischemia.
Cargnoni A, Ceconi C, Curello S, Benigno M, de Jong J, Ferrari R
Mol Cell Biochem. 1996; 160-161:187-94.
PMID: 8901473
DOI: 10.1007/BF00240049.
Cardioprotection: definition, classification, and fundamental principles.
Kubler W, Haass M
Heart. 1996; 75(4):330-3.
PMID: 8705755
PMC: 484304.
DOI: 10.1136/hrt.75.4.330.
Regional coronary perfusion and bioenergetics in experimental atherosclerosis.
Zwolak R, Malik A, Morrison E, Scott R
Am J Pathol. 1980; 99(1):143-58.
PMID: 7361855
PMC: 1903477.