» Articles » PMID: 14743303

Performance of the Chronically Hypoxic Young Rabbit Heart

Overview
Journal Pediatr Cardiol
Date 2004 Jan 27
PMID 14743303
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Hearts isolated from 30 rabbits, raised from birth to approximately 5 weeks of age under either hypoxic (FIO2, 0.10) or normoxic (FIO2, 0.21) conditions, underwent retrograde aortic perfusion using a non-recirculating, well-oxygenated crystalloid solution. The left ventricular end diastolic pressure was initially set at approximately 5 mmHg. Aerobic performance was studied by measuring peak systolic pressure (PSP), coronary flow, glucose oxidation, and oxygen consumption. Anaerobic function was assessed by determining time for the onset of contracture (TOC) in the presence of zero coronary flow. Hypoxic vs normoxic hearts (mean+/-SEM): heart rate, 197+/-6 vs 190+/-5 beats per minute; PSP, 136+/-4* vs 108+/-4 mmHg; dP/dt(max), 2294+/-125* vs 1549+/-144 mmHg/sec; relaxation time constant (Tau), 26.9+/-1.1* vs 41.6+/-4.8 msec; (-) dP/dt(max), 1422+/-43* vs 1001+/-63 mmHg/sec; coronary flow, 86.3+/-4.2* vs 59.9+/-2.9 ml/min/g(dry); glucose oxidation, 3511+/-118* vs 2979+/-233 nmol/min/g(dry); oxygen consumption, 28.2+/-1.4* vs 22.7+/-1.4 micromol/min/g(dry); and TOC, 11.8+/-1.2* vs 22.9+/-2.2 min (*p < 0.05). Hearts isolated from young rabbits, exposed to hypoxia from birth, exhibited enhanced ventricular systolic and diastolic mechanical function, elevated coronary flow, retained capacity for aerobic metabolism, and a shorter TOC compared to their normoxic counterparts.

Citing Articles

PPARγ Agonist Pioglitazone Prevents Hypoxia-induced Cardiac Dysfunction by Reprogramming Glucose Metabolism.

Wang Y, Zhang R, Chen Q, Lei Z, Shi C, Pang Y Int J Biol Sci. 2024; 20(11):4297-4313.

PMID: 39247816 PMC: 11379067. DOI: 10.7150/ijbs.98387.


Effects of Hypoxia and Reoxygenation on Metabolic Profiles of Cardiomyocytes.

Condori L, Vivas C, Barreto Y, Gomes L, Alencar A, Bloise A Cell Biochem Biophys. 2024; 82(2):969-985.

PMID: 38498099 DOI: 10.1007/s12013-024-01249-1.


Adaptive Cardiac Metabolism Under Chronic Hypoxia: Mechanism and Clinical Implications.

Su Z, Liu Y, Zhang H Front Cell Dev Biol. 2021; 9:625524.

PMID: 33604337 PMC: 7884626. DOI: 10.3389/fcell.2021.625524.


Relationship between birth size and coronary heart disease in China.

Fan Z, Zhang Z, Li Y, Wang Z, Xu T, Gong X Ann Med. 2010; 42(8):596-602.

PMID: 20828358 PMC: 3787846. DOI: 10.3109/07853890.2010.514283.


Recovery of the chronically hypoxic young rabbit heart reperfused following no-flow ischemia.

Uy R, Ross-Ascuitto N, Ascuitto R Pediatr Cardiol. 2006; 27(1):37-46.

PMID: 16391992 DOI: 10.1007/s00246-005-1094-1.

References
1.
Teitel D, Sidi D, Bernstein D, Heymann M, Rudolph A . Chronic hypoxemia in the newborn lamb: cardiovascular, hematopoietic, and growth adaptations. Pediatr Res. 1985; 19(10):1004-10. DOI: 10.1203/00006450-198510000-00011. View

2.
Holmes G, Epstein M . Effect of growth and maturation in a hypoxic environment on maximum coronary flow rates of isolated rabbit hearts. Pediatr Res. 1993; 33(5):527-32. DOI: 10.1203/00006450-199305000-00021. View

3.
Ostadal B, Ostadalova I, Dhalla N . Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev. 1999; 79(3):635-59. DOI: 10.1152/physrev.1999.79.3.635. View

4.
Weiss J, Frederiksen J, WEISFELDT M . Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976; 58(3):751-60. PMC: 333234. DOI: 10.1172/JCI108522. View

5.
Ascuitto R, Ross-Ascuitto N, Chen V, Downing S . Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol. 1989; 256(1 Pt 2):H9-15. DOI: 10.1152/ajpheart.1989.256.1.H9. View