Cioccarelli S, Giunchi D, Casini G, Pollonara E, Bingman V, Gagliardo A
Proc Biol Sci. 2025; 292(2042):20243099.
PMID: 40068821
PMC: 11896696.
DOI: 10.1098/rspb.2024.3099.
Yamamoto K, Estienne P, Bloch S
Brain Behav Evol. 2024; 99(4):230-247.
PMID: 38952102
PMC: 11614313.
DOI: 10.1159/000537746.
Kersten Y, Moll F, Erdle S, Nieder A
eNeuro. 2024; 11(4).
PMID: 38684368
PMC: 11064124.
DOI: 10.1523/ENEURO.0098-24.2024.
Straight P, Gignac P, Kuenzel W
Sci Rep. 2024; 14(1):8447.
PMID: 38600121
PMC: 11006926.
DOI: 10.1038/s41598-024-58788-z.
Rudolf J, Philipello N, Fleihan T, Dickman J, Delmore K
PLoS One. 2024; 19(3):e0300479.
PMID: 38512887
PMC: 10956746.
DOI: 10.1371/journal.pone.0300479.
Topography of inputs into the hippocampal formation of a food-caching bird.
Applegate M, Gutnichenko K, Aronov D
J Comp Neurol. 2023; 531(16):1669-1688.
PMID: 37553864
PMC: 10611445.
DOI: 10.1002/cne.25533.
An entorhinal-like region in food-caching birds.
Applegate M, Gutnichenko K, Mackevicius E, Aronov D
Curr Biol. 2023; 33(12):2465-2477.e7.
PMID: 37295426
PMC: 10329498.
DOI: 10.1016/j.cub.2023.05.031.
Could theropod dinosaurs have evolved to a human level of intelligence?.
Reiner A
J Comp Neurol. 2023; 531(9):975-1006.
PMID: 37029483
PMC: 10106414.
DOI: 10.1002/cne.25458.
Topography of inputs into the hippocampal formation of a food-caching bird.
Applegate M, Gutnichenko K, Aronov D
bioRxiv. 2023; .
PMID: 36993579
PMC: 10054989.
DOI: 10.1101/2023.03.14.532572.
An entorhinal-like region in food-caching birds.
Applegate M, Gutnichenko K, Mackevicius E, Aronov D
bioRxiv. 2023; .
PMID: 36711539
PMC: 9881956.
DOI: 10.1101/2023.01.05.522940.
Spatial coding in the hippocampus and hyperpallium of flying owls.
Agarwal A, Sarel A, Derdikman D, Ulanovsky N, Gutfreund Y
Proc Natl Acad Sci U S A. 2023; 120(5):e2212418120.
PMID: 36693104
PMC: 9945993.
DOI: 10.1073/pnas.2212418120.
The endocast of the insular and extinct Sylviornis neocaledoniae (Aves, Galliformes), reveals insights into its sensory specializations and its twilight ecology.
Riamon S, Balouet J, Rolland-Guillard J, Salaviale C, Guenser P, Steyer J
Sci Rep. 2022; 12(1):21185.
PMID: 36477415
PMC: 9729198.
DOI: 10.1038/s41598-022-14829-z.
Neurons in the pigeon visual network discriminate between faces, scrambled faces, and sine grating images.
Clark W, Chilcott M, Azizi A, Pusch R, Perry K, Colombo M
Sci Rep. 2022; 12(1):589.
PMID: 35022466
PMC: 8755821.
DOI: 10.1038/s41598-021-04559-z.
American Crow Brain Activity in Response to Conspecific Vocalizations Changes When Food Is Present.
Pendergraft L, Marzluff J, Cross D, Shimizu T, Templeton C
Front Physiol. 2021; 12:766345.
PMID: 34867472
PMC: 8637333.
DOI: 10.3389/fphys.2021.766345.
Optocollic responses in adult barn owls (Tyto furcata).
Wagner H, Pappe I, Nalbach H
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021; 208(2):239-251.
PMID: 34812911
PMC: 8934767.
DOI: 10.1007/s00359-021-01524-z.
Light-incubation effects on lateralisation of single unit responses in the visual Wulst of domestic chicks.
Costalunga G, Kobylkov D, Rosa-Salva O, Vallortigara G, Mayer U
Brain Struct Funct. 2021; 227(2):497-513.
PMID: 33783595
PMC: 8844149.
DOI: 10.1007/s00429-021-02259-y.
Connectivity between nidopallium caudolateral and visual pathways in color perception of zebra finches.
Hsiao Y, Chen T, Yu P, Huang D, Hu F, Chuong C
Sci Rep. 2020; 10(1):19382.
PMID: 33168854
PMC: 7653952.
DOI: 10.1038/s41598-020-76542-z.
Event-related functional MRI of awake behaving pigeons at 7T.
Behroozi M, Helluy X, Strockens F, Gao M, Pusch R, Tabrik S
Nat Commun. 2020; 11(1):4715.
PMID: 32948772
PMC: 7501281.
DOI: 10.1038/s41467-020-18437-1.
Non-thalamic origin of zebrafish sensory nuclei implies convergent evolution of visual pathways in amniotes and teleosts.
Bloch S, Hagio H, Thomas M, Heuze A, Hermel J, Lasserre E
Elife. 2020; 9.
PMID: 32896272
PMC: 7478893.
DOI: 10.7554/eLife.54945.
Evolution of neural processing for visual perception in vertebrates.
Knudsen E
J Comp Neurol. 2020; 528(17):2888-2901.
PMID: 32003466
PMC: 7586818.
DOI: 10.1002/cne.24871.