Marunaka Y
J Physiol Sci. 2023; 73(1):31.
PMID: 37968609
PMC: 10717538.
DOI: 10.1186/s12576-023-00889-x.
Leifelt J, Dziegiel M, Brahm J
J Gen Physiol. 2023; 155(10).
PMID: 37535830
PMC: 10397051.
DOI: 10.1085/jgp.202213321.
Jennings M
Am J Physiol Cell Physiol. 2021; 321(6):C1028-C1059.
PMID: 34669510
PMC: 8714990.
DOI: 10.1152/ajpcell.00275.2021.
Gagnon K, Delpire E
Front Physiol. 2021; 11:588664.
PMID: 33716756
PMC: 7947867.
DOI: 10.3389/fphys.2020.588664.
Jennings M
J Gen Physiol. 2018; 150(8):1063-1080.
PMID: 30030301
PMC: 6080889.
DOI: 10.1085/jgp.201812078.
Possible roles for ATP release from RBCs exclude the cAMP-mediated Panx1 pathway.
Keller A, Diederich L, Panknin C, DeLalio L, Drake J, Sherman R
Am J Physiol Cell Physiol. 2017; 313(6):C593-C603.
PMID: 28855161
PMC: 5814586.
DOI: 10.1152/ajpcell.00178.2017.
The hidden hand of chloride in hypertension.
McCallum L, Lip S, Padmanabhan S
Pflugers Arch. 2015; 467(3):595-603.
PMID: 25619794
PMC: 4325190.
DOI: 10.1007/s00424-015-1690-8.
[Relations between carbonic anhydrase activity and uptake of HCO3 (-) and Cl (-) in photosynthesis by Scenedesmus obliquus].
Findenegg G
Planta. 2014; 116(2):123-31.
PMID: 24458124
DOI: 10.1007/BF00380647.
Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.
Jennings M
Am J Physiol Cell Physiol. 2013; 305(9):C941-50.
PMID: 23864610
PMC: 4042536.
DOI: 10.1152/ajpcell.00178.2013.
Chloride homeostasis in Saccharomyces cerevisiae: high affinity influx, V-ATPase-dependent sequestration, and identification of a candidate Cl- sensor.
Jennings M, Cui J
J Gen Physiol. 2008; 131(4):379-91.
PMID: 18378800
PMC: 2279172.
DOI: 10.1085/jgp.200709905.
Regulation of AE2-mediated Cl- transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2-terminal cytoplasmic domain.
Stewart A, Chernova M, Shmukler B, Wilhelm S, Alper S
J Gen Physiol. 2002; 120(5):707-22.
PMID: 12407081
PMC: 2229549.
DOI: 10.1085/jgp.20028641.
The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells.
Timmer R, Gunn R
J Gen Physiol. 2000; 116(3):363-78.
PMID: 10962014
PMC: 2233690.
DOI: 10.1085/jgp.116.3.363.
Molecular characterization of anion exchangers in the cochlea.
Zimmermann U, Kopschall I, Rohbock K, Bosman G, Zenner H, Knipper M
Mol Cell Biochem. 2000; 205(1-2):25-37.
PMID: 10821419
DOI: 10.1023/a:1007002916772.
Measurement of the distribution of anion exchange function in normal human red cells.
Raftos J, Bookchin R, Lew V
J Physiol. 1997; 499 ( Pt 1):17-25.
PMID: 9061637
PMC: 1159334.
DOI: 10.1113/jphysiol.1997.sp021908.
Characterization of oxalate transport by the human erythrocyte band 3 protein.
Jennings M, Adame M
J Gen Physiol. 1996; 107(1):145-59.
PMID: 8741736
PMC: 2219244.
DOI: 10.1085/jgp.107.1.145.
Rapid increase in pH set-point of the Na(+)-in-dependent chloride/bicarbonate antiporter in Vero cells exposed to heat shock.
Ludt J, Sandvig K, Olsnes S
J Membr Biol. 1993; 134(2):143-53.
PMID: 8411117
DOI: 10.1007/BF00232750.
Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes.
Jennings M
J Gen Physiol. 1995; 105(1):21-47.
PMID: 7537324
PMC: 2216924.
DOI: 10.1085/jgp.105.1.21.
Chloride-bicarbonate exchange in human red cells measured using a stopped flow apparatus.
Lambert A, Lowe A
J Physiol. 1980; 306:431-43.
PMID: 7463368
PMC: 1283014.
DOI: 10.1113/jphysiol.1980.sp013405.
A procedure for membrane-protein reconstitution and the functional reconstitution of the anion transport system of the human-erythrocyte membrane.
Wolosin J
Biochem J. 1980; 189(1):35-44.
PMID: 7458905
PMC: 1161915.
DOI: 10.1042/bj1890035.
The kinetics of anion equilibrium exchange across the red blood cell membrane as measured by means of 35S thiocyanate.
Dissing S, Romano L, Passow H
J Membr Biol. 1981; 62(3):219-29.
PMID: 7328631
DOI: 10.1007/BF01998167.