Ferguson A, Roy S, Kormanik K, Kim Y, Dumas K, Ritov V
PLoS Genet. 2014; 9(12):e1004020.
PMID: 24385923
PMC: 3868569.
DOI: 10.1371/journal.pgen.1004020.
GRANNER D, Hargrove J
Mol Cell Biochem. 1983; 53-54(1-2):113-28.
PMID: 6137759
DOI: 10.1007/BF00225249.
RAPOPORT M, Beisel W
J Clin Invest. 1968; 47(4):934-9.
PMID: 5641628
PMC: 297241.
DOI: 10.1172/JCI105785.
Black I, Axelrod J
Proc Natl Acad Sci U S A. 1968; 61(4):1287-91.
PMID: 5249810
PMC: 225253.
DOI: 10.1073/pnas.61.4.1287.
Friedman A, Walker C
Arch Toxikol. 1972; 29(1):39-49.
PMID: 5045936
DOI: 10.1007/BF00316513.
[Regulation of cholesterol synthesis].
Hamprecht B
Naturwissenschaften. 1969; 56(8):398-405.
PMID: 4903002
DOI: 10.1007/BF00593615.
Circadian rhythm of fatty acid desaturation in mouse liver.
Actis Dato S, Catala A, Brenner R
Lipids. 1973; 8(1):1-6.
PMID: 4683805
DOI: 10.1007/BF02533231.
Elevation of blood glucose and induction of hepatic enzymes by 2-deoxyglucose in mice with hypothalamic damage caused by gold thioglucose.
Fuller R
Experientia. 1972; 28(3):299-300.
PMID: 4402103
DOI: 10.1007/BF01928701.
Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity.
Black I, Reis D
J Physiol. 1971; 219(2):267-80.
PMID: 4400586
PMC: 1331630.
DOI: 10.1113/jphysiol.1971.sp009661.
Cholinergic regulation of hepatic tyrosine transaminase activity.
Black I, Reis D
J Physiol. 1971; 213(2):421-33.
PMID: 4396847
PMC: 1331769.
DOI: 10.1113/jphysiol.1971.sp009391.
Daily rhythms in hepatic polysome profiles and tyrosine transaminase activity: role of dietary protein.
Fishman B, Wurtman R, MUNRO H
Proc Natl Acad Sci U S A. 1969; 64(2):677-82.
PMID: 4391022
PMC: 223397.
DOI: 10.1073/pnas.64.2.677.
Elevation and depression of hepatic tyrosine transaminase activity by depletion and repletion of norepinephrine.
Black I, Axelrod J
Proc Natl Acad Sci U S A. 1968; 59(4):1231-4.
PMID: 4385108
PMC: 224856.
DOI: 10.1073/pnas.59.4.1231.
Mechanism of the daily rhythm in hepatic tyrosine transaminase activity: role of dietary tryptophan.
Wurtman R, Shoemaker W, Larin F
Proc Natl Acad Sci U S A. 1968; 59(3):800-7.
PMID: 4384464
PMC: 224746.
DOI: 10.1073/pnas.59.3.800.
Daily rhythmic changes in sodium-potassium activated adenosine-triphosphatase activities in rat liver and kidney. Sodium-potassium activated adenosine-triphosphatase, XXIX.
BAKKEREN J, von der Beek J, Bonting S
Pflugers Arch. 1971; 325(1):77-84.
PMID: 4253434
DOI: 10.1007/BF00587493.
The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes.
Salter M, Pogson C
Biochem J. 1985; 229(2):499-504.
PMID: 3899109
PMC: 1145083.
DOI: 10.1042/bj2290499.
Predominant periportal expression of the phosphoenolpyruvate carboxykinase and tyrosine aminotransferase genes in rat liver. Dynamics during the daily feeding rhythm and starvation-refeeding cycle demonstrated by in situ hybridization.
Bartels H, Herbort H, Jungermann K
Histochemistry. 1990; 94(6):637-44.
PMID: 1980679
DOI: 10.1007/BF00271991.
On the intrinsic innervation of normal rat liver. Histochemical and scanning electron microscopical studies.
Skaaring P, BIERRING F
Cell Tissue Res. 1976; 171(2):141-55.
PMID: 975210
DOI: 10.1007/BF00219403.
L-Tryptophan action on hepatic RNA synthesis and enzyme induction.
CIHAK A
Mol Cell Biochem. 1979; 24(3):131-42.
PMID: 37426
DOI: 10.1007/BF00220732.
The role of glucocorticoids in the regulation of the diurnal rhythm of hepatic beta-hydroxy-beta-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase.
Mitropoulos K, Balasubramaniam S
Biochem J. 1976; 160(1):49-55.
PMID: 12745
PMC: 1164200.
DOI: 10.1042/bj1600049.